





AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

# R&D with Very Forward Calorimeters for Linear Colliders

Marek Idzik AGH-UST

On behalf of FCAL Collaboration



- Introduction to Forward Calorimeters for a Linear Collider
- Test-beam results from a 4-plane LumiCal calorimeter prototype
- R&D for a Very Compact Calorimeter
- Summary



## **Introduction to Forward Calorimeters Motivation**



Precise measurement of luminosity (Bhabha events) by LumiCal and fast bunch by bunch estimate by BeamCal with specific requirements and challenges:

- Compact (small Moliere radius)
- Fast readout
- High occupancy
- Rad-hard (BeamCal~1MGy/year)
- Mechanical precision (LumiCal)
- Low power dissipation
- Extension of detector coverage



## Introduction to Forward Calorimeters Luminometer and Beam monitor

### LumiCal





- Sandwich type, very compact (Moliere radius ~1cm), sampling calorimeters
  - LumiCal Si-W,
  - BeamCal GaAs(?)-W
- ILC 30 layers (~30 X0),
   CLIC 40 layers
- Low polar angle acceptance
  - LumiCal ~100 mrad
  - BeamCal ~10 mrad

#### BeamCal





- compensated GaAs sensors
- 500 um thick
- uniform segmentation

- standard p in n Si sensors
- 300 um thick, pad pitch 1.8 mm
- Azimuthal/radial segmentation 48 sectors / 64 pads



# Introduction to Forward Calorimeters Main FCAL R&Ds

- Prototype of a compact calorimeter comprising:
  - thin (<1mm) sensor modules</li>
  - thin (<3.5mm) readout board with SoC type (System on Chip) ASIC
- Other R&Ds
  - BeamCal study of other rad-hard materials (e.g. Si) and different detector design (with horizontal sapphire sensors)
  - Studies of tracker in front of LumiCal
  - Studies of LHCal
  - Design of a readout ASIC for BeamCal



# Test-beam with 4-plane LumiCal prototype LumiCal setup

Precise mechanical frame can hold up to 30 sensorabsorber layers



Prototype tungsten plates 3.5 mm thick (1X0), with flatness on front/back side - 10/50um

#### **Detector planes**



readout board (top) with dedicated ASICs&FPGA, sensor module (bottom)



# Test-beam with 4-plane LumiCal prototype Shower development in 2014 test-beam

Electron, muon and hadron 5 GeV beam from CERN PS was used



Since the present detector module is rather thick (~1cm) the prototype is not yet **compact** 



Measured shower development shows good agreement with MC simulations. Analysis of Moliere radius still in progress...



### R&D for Very Compact Calorimeter Prototype of thin (<1mm) sensor module





Thin sensor modules comprising envelope, sensor, and kapton fan-outs were designed and fabricated. For the envelope 3D printing and carbon fiber were tried, and carbon fiber was chosen as more rigid



## **R&D** for Very Compact Calorimeter Thin sensor module fabrication







- HV kapton was conductively glued to n-side of the sensor,
- Fan-out with Panasonic connector glued to the p-side, ultrasonic wire bonding used to connect sensor pads to fan-out traces.
- Low-height contacts technologies (TAB bonding, spring contact) under study...



## R&D for Very Compact Calorimeter Test-beam with thin sensor modules

- 2016 test-beam with 1-6 GeV electrons at DESY
- Eight sensor modules (6 in LumiCal and 2 as tracker) used (one with TAB bonding)
- External electronics (ASD-based) used







Test-beam has just finished. Data analysis has just started...



# R&D for Very Compact Calorimeter FLAME new SoC type readout ASIC for LumiCal

- For very compact calorimeter an ultra-low power, SoC type readout ASIC needed
- FLAME: project of 16-channel readout ASIC in CMOS 130nm, front-end&ADC in each channel, fast serialization and data transmission, all functionalities in a single ASIC





# **R&D for Very Compact Calorimeter Prototypes of FLAME key blocks**

- Prototype 8-channel FE+ADC ASIC:
  - Front-end: variable gain, CR-RC shaper,
     Tpeak = 50ns, ENC~900el@20pF
  - ADC: 10-bit SAR, fs<=40MSps</li>
  - Power (FE+ADC) <2mW/channel</li>



#### Front-end response for MIP



#### First tests started:

- front-end: OK
- ADC: OK
- front-end&ADC: setup still in preparation...
- serializer: basic functionality OK
- serializer, data transmission: setup still in preparation...

- Prototype serializer ASIC comprising:
  - Fast ultra-low power multi-phase PLL
  - Power <20mW@10Gbps</li>
  - Fast serializer 22b → 1b
  - Fast SST driver



Eye diagram at 5Gbps





R&D for very forward calorimetry at future linear collider is carried on within the FCAL collaboration:

- Development of very compact calorimeter prototype, presently the main FCAL goal, in advanced stage:
  - Prototypes of new thin sensor modules have been already fabricated and used in the test-beam. Data analyses are ongoing...
  - Prototypes of key blocks of FLAME new fast, ultra-low power SoC type readout ASIC - fabricated and first promising results obtained
- In parallel various R&Ds, like studies of new rad-hard sensors for BeamCal, Tracker in front of LumiCal, design of LHCal, BeamCal readout, are underway.

## Thank you for attention





### **Forward detectors**





### FCAL overview Luminosity measurement by LumiCal detector



- Precise measurement of luminosity (10<sup>-3</sup> at ILC, 10<sup>-2</sup> at CLIC)
- Low angle physics

Gauge process for the luminosity measurement: Bhabha scattering

$$\frac{d\sigma_{\rm B}}{d\theta} = \frac{2\pi\alpha_{\rm em}^2}{s} \frac{\sin\theta}{\sin^4(\theta/2)} \approx \frac{32\pi\alpha_{\rm em}^2}{s} \frac{1}{\theta^3}$$









## Other FCAL R&Ds Studies of Tracker in front of LumiCal

#### Motivation:

- Enable  $e/\gamma$  identification, important for various physics studies, like dark matter searches and photon structure function,
- · Improve polar and azimuthal angle measurement accuracy.



In August 2016 test-beam at DESY we would like to study e/y identification using standard LumiCal sensors as tracking detectors.



## Other FCAL R&Ds Radiation studies of BeamCal sensors at SLAC

Studies done in realistic radiation field, as expected for ILC/CLIC

| Sensor Type | Notable<br>Exposures (Mrad) |
|-------------|-----------------------------|
| GaAs        | 20                          |
| SiC         | 80                          |
| Si PF       | <b>270</b> , <b>570</b>     |
| Si NF       | 300                         |
| Si PC       | 300                         |
| Si NC       | 290                         |

Promising results with Si (although cooling would probably be required...)

P-type Float Zone Si Charge Collection after 2.7MGy=270Mrad



@600 V, ~20% charge collection loss (60C annealing)



## New sensor module Low-height contact of the sensor

- Approaches :
  - wirebonding

conventional, currently used, minimum height ~100µm

Flat loop wire bonding

staggered pcb required

Conductive glue

tested at DESY, Krakow, TAU: not satisfying ...

Laser bonding

tested by TAU: not possible because aluminum pads

tape automated bonding (TAB)

first enquiries by TAU

bonding wedge & dedicated fanout sample received

- Spring loaded contact
  - technology tests by DESY (Zeuthen)











### BeamCal sensor material propoertioiies

|   | S                           | Sapphire       | Diamond | GaAs  | Si       |       |
|---|-----------------------------|----------------|---------|-------|----------|-------|
| • | Density, g/cm3              | 3.98           | 3.52    | 5.32  | 2.33     |       |
| • | Dielectric constant         | 9.3 - 11.5     | 5.7     | 10.9  | 11.7     |       |
| • | Breakdown field, V/cm       | ~106 *         | 107     | 4.105 | <b>,</b> | 3.105 |
| • | Resistivity, $\Omega$ ·cm   | >1014          | >1011   | 107   | 105      |       |
| • | Band gap, eV                | 9.9            | 5.45    | 1.42  | 1.12     |       |
| • | El. mobility, cm2/(V·s)     | >600 <b>**</b> | 1800    | ~8500 | 1360     |       |
| • | Hole mobility, cm2/(V·s)    | -              | 1200    | -     | 460      |       |
| • | MIP eh pairs created, eh/µr | n 22           | 36      | 150   | 73       |       |

### +First irradiation tests of SiC

<sup>\*</sup> Typical operation field ~1-2·104 V cm-1

<sup>\*\*</sup> at 20°C, ~30000 at 40°K