

GEM Detector and Its Readout System

Bartosz Mindur

Faculty of Physics and Applied Computer Science AGH University of Science and Technology, 30-059 Krakow, Poland

- GEM Detectors
- Our Setup
- MSGCROC Chip
- "Juelich" readout
- DAQ Software
- Detector test results
- Ethernet readout
- Conclusions
- Online Ethernet readout presentation

Gas Electron Multiplier

- Invented in 1997 by Fabio Sauli
- GEM is a thin, metal coated polyimide foil perforated with high density holes
 - Holes are typically 70µm in diameter, 140µm apart in triangular pattern
- Electrons are collected on patterned readout board
- A fast signal can be detected on the lower GEM electrode
- All readout electrodes are at ground potential

GEM – many types

A. Bressan et al, Nucl. Instr. and Meth. A425(1999)254

- Full decoupling of the charge amplification structure from the charge collection and readout structure
- Both structures can be optimized independently

Compass

Totem

 Both detectors use three GEM foils in cascade for amplification to reduce discharge probability by reducing field strength.

GEM Performance

AGH

Space resolution ~ 40 μ m rms Cluster size ~ 500 μ m FWHM

C. Altunbas et al, DESY Aging Workshop (Nov. 2001) Nucl. Instr. and Meth. A A. Bressan et al, Nucl. Instr. And Meth. A425(1999)262

GEM Limitations

- Discharges
 - Caused by field and charge density
 - Can destroy the detector
 - Can destroy front-end
 - Solution
 - Multistep amplification
- Insulator charging up
 - Gain variation with time and rate
 - Solution
 - Slightly conductive materials

Our detector

• Standard CERN GEM

• 10 x 10 cm

- Kapton window
- Three GEM foils
- X & Y readout strips
 - 256 per plane
- Drift space of 3 mm
- Transition and Induction gaps of 2 mm
- Readout of the strips
 - Via four Panasonic 130 pin connectors
 - Part no. AXK6SA3677YG
 - 128 signal
 - 2 ground lines
- Gas inlet and outlet
- Pads for HV soldering

HV Distribution

Asymmetric HV divider

- Pros
 - One HV power supply needed
 - Slightly different voltage on each GEM foil
- Cons
 - No flexibility
 - Relatively high current needed (0.8 mA)

V	GEM 1 (V)	GEM 2 (V)	GEM 3 (V)
3800.0	383.3	346.1	302.8
3900.0	393.4	355.3	310.8
4000.0	403.5	364.4	318.7
4100.0	413.6	373.5	326.7
4200.0	423.7	382.6	334.7
4300.0	433.7	391.7	342.6
4400.0	443.8	400.8	350.6
4500.0	453.9	409.9	358.6

Readout structure

• 256 x 256 strips

- One strip plane on top of the other
- Only negative signals
- Different strip widths to get the same number on electrons collected on both planes

Our setup

- Standard CERN triple GEM
- Ar/CO2 80/20 gas mixture
- HV power supply
- Two ASICs' boards
 - Each has two ASICs
- FPGA board

- Time distribution board
- SiSLink optical connection to PC
- Dedicated readout software

MSGCROC

AGH

Analogue

- 0.35 mm CMOS process from Austria Microsystems
- Input device: PMOS 2368μm/0.4 μm
- Bias current of the input transistor:
 2.36mA (nominal)
- Power consumption ~25 mW/channel (@ 3.3 V)
- Separated analogue and digital power supply

Timing channel

- Fast Shaper T_{peak} = 25 ns
- Comparator with TWC T_{walk} < 2 ns
- The output signal from the timing channel is used to latch a 14-bit time stamp of 1 ns resolution and to enable the peak detector and hold (PDH) circuit in the energy channel
- Each comparator is equipped with a 5-bit trimming DAC, which allows to correct the threshold offset on the channel basis with a precision better than 1 LSB in the threshold DAC (8-bit) common for all channels

Energy channel

- Slow Shaper T_{peak} = 85 ns
- The PDH circuit detects peaks of incoming pulses and holds their values for a given time period controlled with respect to the response of the comparator in the fast timing channel

MSGCROC Characteristics

- Signal parameters to be measured:
 - position X/Y, time T, energy (amplitude) EX/EY
- Detector strip capacitance: ~ 23 pF
- The preamp-shaper circuit must be compatible with positive and negative signal polarities
- Input signal charge: 2·10⁵ e- (32fC) 5·10⁶ e- (800fC) (depending on the detector gas amplification)
- Variable gain in a range 1 20 to cope with different detector gas amplification factors
 - Gain factors: ×1, ×2, ×4, ×8, and ×16
- Hit rate per strip: ~ 9.10⁵ /s (global count rate: 10⁸ /s)
- X/Y coincidence window 2 ns + (EX = EY)
- Discriminator: time walk < 2 ns, jitter < 2 ns FWHM
- The data must be buffered and derandomized on the ASIC
 - 4 bit FIFO analogue and digital
- Zero suppression must be performed on the ASIC
- The ASIC must generate a self trigger for each event

GEM ASICS' Board

- Two boards
 - Each with two ASICs
- 1MΩ termination resistors solder to all input lines
- 64 channels per board fully operational

ADC-FPGA prototype board

Clock distribution board

- Master reference frequency 32 MHz
- Clock outputs:

- 5 x 256 MHz
- 5 x 256 MHz 90° phase shifted
- 30 ps max. cycle-to-cycle Jitter

Data format and timing diagram

DAQ Software – layered concept

 DAQ Software is structured in four layers:

- Layer 1 connection to the hardware (possible different types)
- Layer 2 data distribution to the processing modules
- Layer 3 includes data processing modules
- Layer 4 data visualization and overall system configuration (application level)

GEM Test Results

Timing measurement

AGH

ASIC gain 4, threshold 23 (~315 eV), GEM voltage 3900 V

ASIC gain 4, threshold 60 (~820 eV), GEM voltage 3900 V

ASIC gain 4, threshold 40 (~550 eV), GEM voltage 3900 V

ASIC gain 4, threshold 80 (~1.1 keV), GEM voltage 3900 V

Fe-55 Energy Spectra

ASIC gain 4, threshold 23, GEM voltage 3900 V

ASIC gain 4, threshold 40, GEM voltage 3900 V

Amplitude distribution for strip clusters

2D Imaging with Fe55

Results - conclusions

- Show very good time resolution
 - Only slightly worse then expected value
 - Still some place for improvement (TWC optimization)
- Energy channel characteristic
 - "Nice" collective energy spectrums
 - Energy resolution of about 21 26 %
 - Depends on threshold
- 2D Position resolution
 - "No so good"
 - Because the source type (Fe-55)
- Further studies are ongoing

Ethernet Readout System

Ethernet Readout

- Xilinx ML 403
 Evaluation Board
- Virtex-4 FX 12
 - Build-in Hard Ethernet MAC
- Using Ethernet
 - Raw frames can be sent relatively easily
 - Or custom made protocol

Ethernet Layers

- Open System
 Interconnection Model
 - Two/three bottom layers
- UDP PacketRaw frame
 - IP header

Source MAC

2 3 4 5

6

• UDP header

IP

EtherType

6

Flags/Frag

mentOffSe TTL Prot Checksum

1 1 2

SourcelP

2 3

4

Destination IP

1 2 3 4

T.Length

1 2

• Data

Destination MAC

1 2 3 4 5

AGH

N=41

Core Components for Ethernet readout

Hard Ethernet Mac

- Xlinx Virtex4/5/6 FX
- Ethernet MAC Wrapper IP core
 - LL FIFO 4kB each
- Custom protocol
 - Implemented on top of the LL FIFOs
- Driver for Linux ready working with full speed
- Driver for Windows under the development

Current functionality (FPGA)

- Receiving control frames
 - Start
 - Stop
 - Reset
- Sending data with different types
 - "Raw data"
 - "Control data"
 - Each packet is filled with 64bit counter contains frame no. and fake data up to 1500 bytes
- Rather "proof of concept" design
 - Needs further development

Design Schematic

Custom protocol - EPPRO frames

- Frame format is compliant with commonly used Ethernet II (DIX) standard
 - Receiver MAC address
 - 6 bytes
 - Sender MAC address
 - 6 bytes
 - Frame type
 - 2 bytes
- Frame types used by EPPRO
 - oxo823 default type
 - oxo824 EPPRO RAW type
 - frame does not contain DATATYPE field
 - Payload starts at byte 14

- EPPRO-specific field on 15th byte describes data type that frame carries in it's payload
 - Payload starts at byte 15
 - Payload can be
 - 45 to 1500 bytes
 - Regular frames
 - Up to 9000 bytes long
 - Jumbo frames

EPPRO, LIBEPPRO – design ideas

- EPPRO Linux kernel module
 - As opposed to regular Ethernet driver, EPPRO module is independent from actual hardware
 - It works on top of hardware specific drivers
 - Features

- Buffers, queues frames and passes them to their destination
- Maximum efficiency
- Handles queues' overflow in a smart way
- Frames are passed to
 - User-space
 - Written directly to disk (for efficiency)

- LIBEPPRO: API+library+SDK
 - C-language API defines set of functions and structures enabling user to manage the module
 - Contains ready-to-use tools (i.e. eppconfig)

Test Case: Two Files

Three data types

AGH

- 128, 129 control data, small amount, high priority
- 130 actual data, high throughput

- Three IOSes
 - 1,2 files, subscribing DT#130
 - 4 user-space app, subscribing DT#128,129

Conclusion: NO DATA LOSS! Transfer close to 1Gbps

Test Case: Three Files

Three data types

AGH

- 128, 129 control data, small amount, high priority
- 130 actual data, high throughput

- Four IOSes
 - 1,2,3 files, subscribing DT#130
 - 4 user-space app, subscribing DT#128,129

Conclusion: Data loss on IOS level. Dispatcher queues still OK.

Slow control (very preliminary)

- I2C master model
 - Verilog synthesizable model
- I2C slave
 - Behaviour simulation model
 - Verilog synthesizable model
- Shall be integrated with Ethernet Readout
 - Easy compact solution for data readout and ASICs setup
- May also be used as RS232 to I2C interface
 - For any kind of FPGA

Conclusion

Detection system

- GEM detector
- Full readout chain ready to use
- Software to manage configuration and analyze data
- Preliminary results show proper operation of the system
- New FPGA readout
 - Ethernet base
 - Up to 1 Gbps throughput
 - Can possibly have more then one connection
 - No special hardware on PC side needed
 - Can easily electrically decouple two readout domains
 - By using optical transceivers

Thank you But wait for online presentation