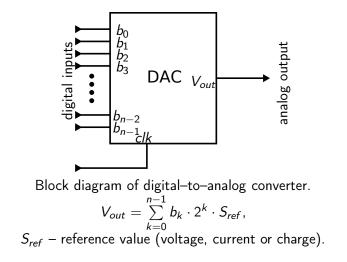
Development of general purpose low-power small-area 10 bit CMOS DAC

Dominik Przyborowski


April 1, 2009

Dominik Przyborowski Development of general purpose low-power small-area 10

Outline

- 1 DAC Architecture Overview
- 10 bit Low–Power Small–Area Current–Steering DAC design.
 - Specification
 - Circuit Design.
 - Layout
- 3 1st Prototype Measurements Results
 - Static Measurements
 - Power Measurements
 - Transient Measurements
 - Comparison with other low-power 10 bit DACs
 - Possible Improvements.
- 4 Design of 2nd prototype Improvements.
 - Oircuit.
 - Layout.

DAC Architecture Overview

Nyquist rate DACs architectures:

- charge division,
- resistor strings,
- voltage mode R-2R ladder,
- current mode R-2R ladder,
- current steering.

Oversampling DACs:

• $\Sigma - \Delta$ modulators – not discussed here.

Nyquist rate DACs architectures:

- charge division,
- resistor strings,
- voltage mode R-2R ladder,
- current mode R-2R ladder,
- current steering.

Oversampling DACs:

• $\Sigma - \Delta$ modulators – not discussed here.

Nyquist rate DACs architectures:

- charge division,
- resistor strings,
- voltage mode R-2R ladder,
- current mode R–2R ladder,
- current steering.

Oversampling DACs:

• $\Sigma - \Delta$ modulators – not discussed here.

Nyquist rate DACs architectures:

- charge division,
- resistor strings,
- voltage mode R–2R ladder,
- current mode R–2R ladder,
- current steering.

Oversampling DACs:

• $\Sigma - \Delta$ modulators – not discussed here.

Nyquist rate DACs architectures:

- charge division,
- resistor strings,
- voltage mode R-2R ladder,
- current mode R–2R ladder,
- current steering.

Oversampling DACs:

• $\Sigma - \Delta$ modulators – not discussed here.

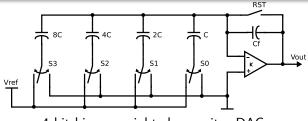
Nyquist rate DACs architectures:

- charge division,
- resistor strings,
- voltage mode R–2R ladder,
- current mode R–2R ladder,
- current steering.

Oversampling DACs:

• $\Sigma - \Delta$ modulators – not discussed here.

A = A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

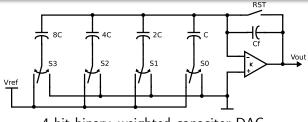

Nyquist rate DACs architectures:

- charge division,
- resistor strings,
- voltage mode R–2R ladder,
- current mode R–2R ladder,
- current steering.

Oversampling DACs:

• $\Sigma - \Delta$ modulators – not discussed here.

DAC Architecture Overview Charge Division.

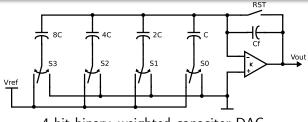

4 bit binary-weighted capacitor DAC.

Properties

$$V_{out} = -rac{C}{C_f} \cdot \sum_{k=0}^{N-1} 2^k \cdot S_k \cdot V_{ref}$$

Dominik Przyborowski Development of general purpose low-power small-area 10

DAC Architecture Overview Charge Division.

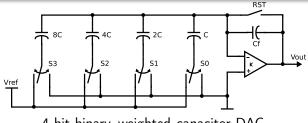

4 bit binary-weighted capacitor DAC.

Properties

$$V_{out} = -rac{C}{C_f} \cdot \sum_{k=0}^{N-1} 2^k \cdot S_k \cdot V_{ref}$$

- resolution up to 12 bits,
- low DC power consumption (only Op Amp and digital part)
- ullet requires refreshing (capacitors leakage current is $pprox \; 1 a A$

DAC Architecture Overview Charge Division.

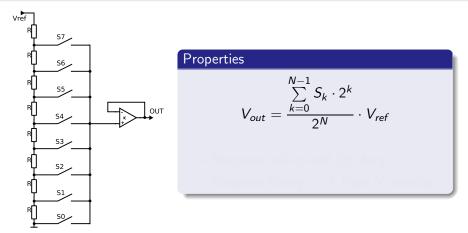

4 bit binary-weighted capacitor DAC.

Properties

$$V_{out} = -rac{C}{C_f} \cdot \sum_{k=0}^{N-1} 2^k \cdot S_k \cdot V_{ref}$$

- resolution up to 12 bits,
- low DC power consumption (only Op Amp and digital part)
 - ullet requires refreshing (capacitors leakage current is $pprox \; 1$ aA

DAC Architecture Overview Charge Division.

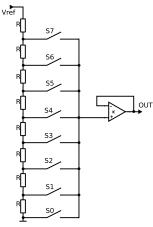

4 bit binary-weighted capacitor DAC.

Properties

$$V_{out} = -rac{C}{C_f} \cdot \sum_{k=0}^{N-1} 2^k \cdot S_k \cdot V_{ref}$$

- resolution up to 12 bits,
- low DC power consumption (only Op Amp and digital part)
- requires refreshing (capacitors leakage current is $\approx~1aA$)

DAC Architecture Overview Resistor String.

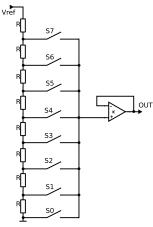


3 bit resistor string DAC.

A = A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

DAC Architecture Overview Resistor String.

Properties



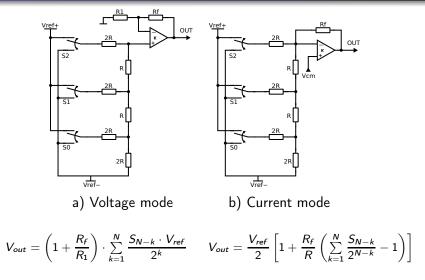
3 bit resistor string DAC.

$V_{out} = \frac{\sum_{k=0}^{N-1} S_k \cdot 2^k}{2^N} \cdot V_{ref}$ • Requires rail-to-rail Op Amp. • Requires *binary* $\rightarrow 1$ from N decoder.

伺き イヨト イヨト

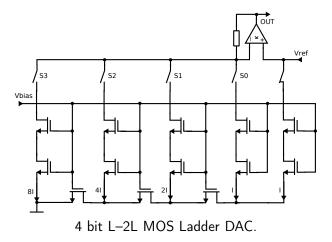
DAC Architecture Overview Resistor String.

3 bit resistor string DAC.

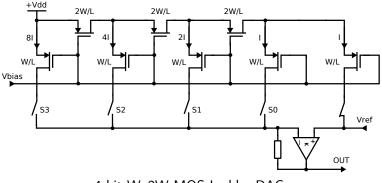

Properties

$$V_{out} = \frac{\sum\limits_{k=0}^{N-1} S_k \cdot 2^k}{2^N} \cdot V_{ref}$$

- Requires rail-to-rail Op Amp.
- Requires *binary* \rightarrow 1 *from* N decoder.


A = A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

DAC Architecture Overview Resistor R–2R Ladder.



• • = • • = •

DAC Architecture Overview Resistor R-2R Ladder – MOS implementation I.

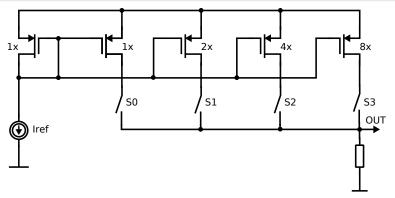
DAC Architecture Overview Resistor R–2R Ladder – MOS implementation II.

4 bit W-2W MOS Ladder DAC.

DAC Architecture Overview Resistor R–2R Ladder – MOS implementation III.

M-2M mismatch considerations

- In M–2M network transistors in different operational points.
- Matching in saturation region is determined by overdrive voltage:


$$\sigma(I_d) = \sqrt{\frac{A_{\beta}^2}{W \cdot L} + \left(\frac{2 \cdot 100\% \cdot A_{V_{th}}}{V_{ov}}\right)^2 \cdot \frac{1}{W \cdot L}}$$

 Matching of MOS transistors in triode region is affected by output opamp offset:

$$\sigma(I_d) = \sqrt{\frac{A_{\beta}^2}{W \cdot L} + \left(\frac{100\% \cdot A_{V_{th}}}{V_{ov} - \frac{1}{2}V_{ds}}\right)^2 \cdot \frac{1}{W \cdot L} + \left(100\% \cdot \frac{\Delta V_{ds}}{V_{ds}}\right)^2}$$

• Simulations results required *special care* – problem with discontinuities of the BSIM transistors model.

DAC Architecture Overview Current Steering.

4 bit Current Steering DAC.

$$V_{out} = I_{ref} \cdot R \cdot \sum_{K=0}^{N-1} S_k \cdot 2^k$$

Outline

DAC Architecture Overview

- 2 10 bit Low–Power Small–Area Current–Steering DAC design.
 Specification
 - Circuit Design.
 - Layout
- 3 1st Prototype Measurements Results
 - Static Measurements
 - Power Measurements
 - Transient Measurements
 - Comparison with other low-power 10 bit DACs
 - Possible Improvements.
- 4 Design of 2nd prototype Improvements.
 - Circuit.
 - Layout.

A B A A B

Requirements:

- 10 bit resolution.
- High swing voltage output.
- Low power consumption below 1 [mW].
- Small area.

Considered architectures:

- Current steering
- Resistors ladder.

Chosen architecture:

Current steering – matching of MOS better than resistors

Requirements:

- 10 bit resolution.
- High swing voltage output.
- Low power consumption below 1 [mW].
- Small area.

Considered architectures:

- Current steering
- Resistors ladder.

Chosen architecture:

Current steering – matching of MOS better than resistors.

Requirements:

- 10 bit resolution.
- High swing voltage output.
- Low power consumption below 1 [mW].

Small area.

Considered architectures:

- Current steering
- Resistors ladder.

Chosen architecture:

Current steering – matching of MOS better than resistors

Requirements:

- 10 bit resolution.
- High swing voltage output.
- Low power consumption below 1 [mW].

Small area.

Considered architectures:

- Current steering
- Resistors ladder.

Chosen architecture:

Current steering – matching of MOS better than resistors

Requirements:

- 10 bit resolution.
- High swing voltage output.
- Low power consumption below 1 [mW].
- Small area.

Considered architectures:

- Current steering
- Resistors ladder.

Chosen architecture:

Current steering – matching of MOS better than resistors

A (1) > A (1) > A

Requirements:

- 10 bit resolution.
- High swing voltage output.
- Low power consumption below 1 [mW].
- Small area.

Considered architectures:

- Current steering.
- Resistors ladder.

Chosen architecture:

Current steering – matching of MOS better than resistors

Requirements:

- 10 bit resolution.
- High swing voltage output.
- Low power consumption below 1 [mW].
- Small area.

Considered architectures:

- Current steering.
- Resistors ladder.

Chosen architecture:

Current steering – matching of MOS better than resistors

Requirements:

- 10 bit resolution.
- High swing voltage output.
- Low power consumption below 1 [mW].
- Small area.

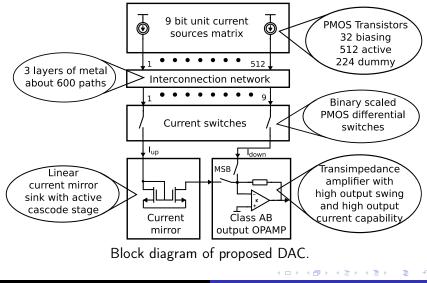
Considered architectures:

- Current steering.
- Resistors ladder.

Chosen architecture:

Current steering – matching of MOS better than resistors.

Outline


DAC Architecture Overview

2 10 bit Low–Power Small–Area Current–Steering DAC design. Specification

- Circuit Design.
- Layout
- 3 1st Prototype Measurements Results
 - Static Measurements
 - Power Measurements
 - Transient Measurements
 - Comparison with other low-power 10 bit DACs
 - Possible Improvements.
- 4 Design of 2nd prototype Improvements.
 - Circuit.
 - Layout.

A B A A B

10 bit Low–Power Small–Area Current–Steering DAC design. Circuit Design.

Dominik Przyborowski Development of general purpose low-power small-area 10 l

10 bit Low–Power Small–Area Current–Steering DAC design. Circuit Design – 9 bit Current Sources Array I.

Require for 9 bit resolution:

$$\delta I_{MSB} \le \frac{1}{3} \cdot 2^{-9} \cdot 100\% = 0.065\%$$

formulas for calculating dimensions: $\frac{W}{L} = \frac{2 \cdot I_D}{\beta \cdot V_{ov}^2}, \qquad \beta = \mu_0 \cdot C_{ox}$ $W \cdot L \ge \frac{1}{\sigma^2(I_D)} \cdot \left[A_{\beta}^2 + \left(\frac{2 \cdot A_{V_{th}}}{V_{out}} \cdot 100\%\right)^2\right]$

Mismatch parameters in used technology:

NMOS: $A_{\beta} = 0.2 \ [\mu m \cdot \%]$ $A_{V_{th}} = 8.2 \ [\mu m \cdot mV]$ PMOS: $A_{\beta} = 0.4 \ [\mu m \cdot \%]$ $A_{V_{th}} = 14.9 \ [\mu m \cdot mV]$

Dominik Przyborowski Development of general purpose low-power small-area 10

Arch. Overview DAC Design Measurements New Design Assumptions Overview Layout

10 bit Low–Power Small–Area Current–Steering DAC design. Circuit Design – 9 bit Current Sources Array I.

Require for 9 bit resolution:

$$\delta I_{MSB} \le rac{1}{3} \cdot 2^{-9} \cdot 100\% = 0.065\%$$

Formulas for calculating dimensions:

$$\frac{W}{L} = \frac{2 \cdot I_D}{\beta \cdot V_{ov}^2}, \qquad \beta = \mu_0 \cdot C_{ox}$$
$$W \cdot L \ge \frac{1}{\sigma^2(I_D)} \cdot \left[A_{\beta}^2 + \left(\frac{2 \cdot A_{V_{th}}}{V_{ov}} \cdot 100\% \right)^2 \right]$$

Mismatch parameters in used technology:

NMOS:
$$A_{\beta} = 0.2 \ [\mu m \cdot \%]$$
 $A_{V_{th}} = 8.2 \ [\mu m \cdot mV]$
PMOS: $A_{\beta} = 0.4 \ [\mu m \cdot \%]$ $A_{V_{th}} = 14.9 \ [\mu m \cdot mV]$

Dominik Przyborowski Development of general purpose low-power small-area 10

Arch. Overview DAC Design Measurements New Design Assumptions Overview Layout

10 bit Low–Power Small–Area Current–Steering DAC design. Circuit Design – 9 bit Current Sources Array I.

Require for 9 bit resolution:

$$\delta I_{MSB} \le rac{1}{3} \cdot 2^{-9} \cdot 100\% = 0.065\%$$

Formulas for calculating dimensions:

$$\frac{W}{L} = \frac{2 \cdot I_D}{\beta \cdot V_{ov}^2}, \qquad \beta = \mu_0 \cdot C_{ox}$$
$$W \cdot L \ge \frac{1}{\sigma^2(I_D)} \cdot \left[A_\beta^2 + \left(\frac{2 \cdot A_{V_{th}}}{V_{ov}} \cdot 100\% \right)^2 \right]$$

Mismatch parameters in used technology:

NMOS:
$$A_{\beta} = 0.2 \ [\mu m \cdot \%]$$
 $A_{V_{th}} = 8.2 \ [\mu m \cdot mV]$
PMOS: $A_{\beta} = 0.4 \ [\mu m \cdot \%]$ $A_{V_{th}} = 14.9 \ [\mu m \cdot mV]$

Dominik Przyborowski Development of general purpose low-power small-area 10

・ロト ・ 同ト ・ ヨト ・ ヨト

Choice of transistors size:

- Assumed LSB current = 100[nA]
- Assumed current source overdrive voltage $\geq 500[mV]$
- Chosen transistor type PMOS
- Chosen W/L unit transistor ratio 1/80 ($V_{ov} = 637[mV]$)
- Calculated unit current source dimensions $0.5\mu/40\mu$

Choice of transistors size:

- Assumed LSB current = 100[nA]
- Assumed current source overdrive voltage $\geq 500[mV]$
- Chosen transistor type PMOS
- Chosen W/L unit transistor ratio 1/80 (V_{ov} = 637[mV])
- Calculated unit current source dimensions $0.5\mu/40\mu$

Choice of transistors size:

- Assumed LSB current = 100[nA]
- Assumed current source overdrive voltage $\geq 500[mV]$
- Chosen transistor type PMOS
- Chosen W/L unit transistor ratio 1/80 ($V_{ov} = 637[mV]$)
- Calculated unit current source dimensions $0.5\mu/40\mu$

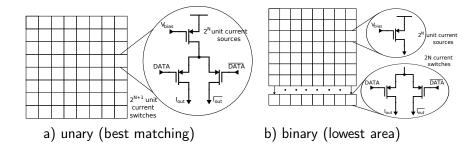
Choice of transistors size:

- Assumed LSB current = 100[nA]
- Assumed current source overdrive voltage $\geq 500[mV]$
- Chosen transistor type PMOS
- Chosen W/L unit transistor ratio $-1/80 (V_{ov} = 637[mV])$
- Calculated unit current source dimensions $0.5\mu/40\mu$

A > < > < >

Choice of transistors size:

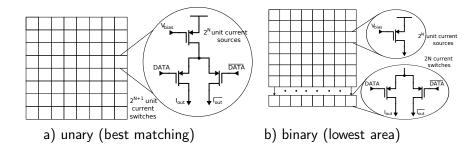
- Assumed LSB current = 100[nA]
- Assumed current source overdrive voltage $\geq 500[mV]$
- Chosen transistor type PMOS
- Chosen W/L unit transistor ratio $-1/80 (V_{ov} = 637[mV])$
- Calculated unit current source dimensions $0.5\mu/40\mu$


▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Choice of transistors size:

- Assumed LSB current = 100[nA]
- Assumed current source overdrive voltage $\geq 500[mV]$
- Chosen transistor type PMOS
- Chosen W/L unit transistor ratio 1/80 (V_{ov} = 637[mV])
- $\bullet\,$ Calculated unit current source dimensions $0.5\mu/40\mu$

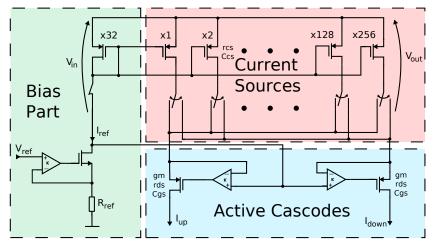
Arch. Overview DAC Design Measurements New Design Assumptions Overview Layout


10 bit Low–Power Small–Area Current–Steering DAC design. Circuit Design – Current Switches.

Current switches – conclusion

To minimize area binary switching (b) was chosen. Dimensions of LSB switch – $0.4\mu/0.35\mu$.

10 bit Low–Power Small–Area Current–Steering DAC design. Circuit Design – Current Switches.


Current switches - conclusion

To minimize area binary switching (b) was chosen. Dimensions of LSB switch – $0.4\mu/0.35\mu$.

< 6 >

Arch. Overview DAC Design Measurements New Design Assumptions Overview Layout

10 bit Low–Power Small–Area Current–Steering DAC design. Circuit Design – Current Source Array with Active Cascodes Stage.

Bias circuit, current sources array and active cascode stage.

Advantages of active cascodes:

- Drain current independent from channel modulation factor.
 - Strongly increases output resistance:

$$r_{out}\simeq K\cdot g_{m}\cdot r_{ds}\cdot r_{CS}pprox 10^{14}\div 10^{16}\Omega$$

• Glitch reduction.

Possibles problems:

Stability

Needs minimum current!

Dominik Przyborowski Development of general purpose low-power small-area 10

Advantages of active cascodes:

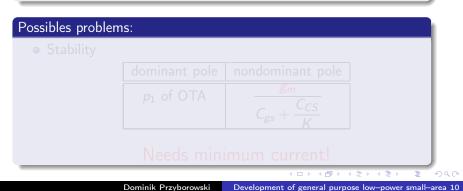
- Drain current independent from channel modulation factor.
- Strongly increases output resistance: $r_{out} \simeq K \cdot g_m \cdot r_{ds} \cdot r_{CS} \approx 10^{14} \div 10^{14}$
- Glitch reduction.

Possibles problems:

Stability

Needs minimum current!

Dominik Przyborowski Development of general purpose low-power small-area 10


イロト イポト イヨト イヨト

Advantages of active cascodes:

- Drain current independent from channel modulation factor.
- Strongly increases output resistance:

$$r_{out} \simeq K \cdot g_m \cdot r_{ds} \cdot r_{CS} \approx 10^{14} \div 10^{16} \Omega$$

• Glitch reduction.

Advantages of active cascodes:

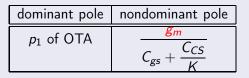
- Drain current independent from channel modulation factor.
- Strongly increases output resistance:

$$r_{out} \simeq K \cdot g_m \cdot r_{ds} \cdot r_{CS} \approx 10^{14} \div 10^{16} \Omega$$

Glitch reduction.

Dominik Przyborowski Development of general purpose low-power small-area 10

Advantages of active cascodes:


- Drain current independent from channel modulation factor.
- Strongly increases output resistance:

$$r_{out} \simeq K \cdot g_m \cdot r_{ds} \cdot r_{CS} \approx 10^{14} \div 10^{16} \Omega$$

Glitch reduction.

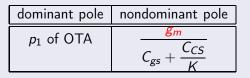
Possibles problems:

Stability

Needs minimum current!

Dominik Przyborowski Development of general purpose low-power small-area 10

Advantages of active cascodes:

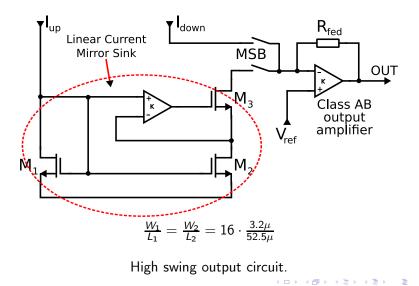

- Drain current independent from channel modulation factor.
- Strongly increases output resistance:

$$r_{out} \simeq K \cdot g_m \cdot r_{ds} \cdot r_{CS} \approx 10^{14} \div 10^{16} \Omega$$

Glitch reduction.

Possibles problems:

Stability



Needs minimum current!

Dominik Przyborowski Development of general purpose low-power small-area 10

Arch. Overview DAC Design Measurements New Design Assumptions Overview Layout

10 bit Low–Power Small–Area Current–Steering DAC design. Circuit Design – High Swing Output Stage (Including Current Mirror Sink) I.

10 bit Low–Power Small–Area Current–Steering DAC design. Circuit Design – High Swing Output Stage II.

Relation between *I*_{down} and *I*_{up}:

$$I_{down} = 511 \cdot I_{LSB} - B_{dec} \cdot I_{up}$$

 B_{dec} – decimal representation of input word (without MSB bit).

Output voltage:

• MSB = 0: $V_{out} = V_{ref} - (511 - B_{dec}) \cdot I_{LSB} \cdot R_{fec}$ • MSB = 1: $V_{out} = V_{ref} + B_{dec} \cdot I_{LSB} \cdot R_{fed}$

伺き イヨト イヨト

10 bit Low–Power Small–Area Current–Steering DAC design. Circuit Design – High Swing Output Stage II.

Relation between I_{down} and $\overline{I_{up}}$:

$$I_{down} = 511 \cdot I_{LSB} - B_{dec} \cdot I_{up}$$

 B_{dec} – decimal representation of input word (without MSB bit).

Output voltage:

• MSB = 0:
$$V_{out} = V_{ref} - (511 - B_{dec}) \cdot I_{LSB} \cdot R_{fed}$$

• MSB = 1: $V_{out} = V_{ref} + B_{dec} \cdot I_{LSB} \cdot R_{fed}$

・ 同 ト ・ ヨ ト ・ ヨ ト

10 bit Low–Power Small–Area Current–Steering DAC design. Circuit Design – High Swing Output Stage II.

Relation between I_{down} and $\overline{I_{up}}$:

$$I_{down} = 511 \cdot I_{LSB} - B_{dec} \cdot I_{up}$$

 B_{dec} – decimal representation of input word (without MSB bit).

Output voltage:

• MSB = 0:
$$V_{out} = V_{ref} - (511 - B_{dec}) \cdot I_{LSB} \cdot R_{fed}$$

• MSB = 1:
$$V_{out} = V_{ref} + B_{dec} \cdot I_{LSB} \cdot R_{fed}$$

Two types of amplifiers were used:

- Single stage OTAs in active cascode stages and biasing. Depending on voltage level OTA use either NMOS or PMOS input differential pair.
- Two stage class AB operational amplifier for output current-to-voltage converter.

Single stage OTA – details:

- Architecture folded cascode.
- Power consumption [µW] 3.5 (NMOS), 25 (PMOS).
- Open loop Gain [dB] 60 (NMOS), 88 (PMOS).
- Gain x Bandwidth (GBW) [MHz] 1 (NMOS), 7 (PMOS).
- Phase Margin > 70°.

Two types of amplifiers were used:

- Single stage OTAs in active cascode stages and biasing. Depending on voltage level OTA use either NMOS or PMOS input differential pair.
- Two stage class AB operational amplifier for output current-to-voltage converter.

Single stage OTA – details:

- Architecture folded cascode.
- Power consumption $[\mu W] 3.5$ (NMOS), 25 (PMOS).
- Open loop Gain [dB] 60 (NMOS), 88 (PMOS).
- Gain x Bandwidth (GBW) [MHz] 1 (NMOS), 7 (PMOS).
- Phase Margin $> 70^{\circ}$.

Two types of amplifiers were used:

- Single stage OTAs in active cascode stages and biasing. Depending on voltage level OTA use either NMOS or PMOS input differential pair.
- Two stage class AB operational amplifier for output current-to-voltage converter.

Single stage OTA – details:

- Architecture folded cascode.
- Power consumption $[\mu W] 3.5$ (NMOS), 25 (PMOS).
- Open loop Gain [dB] 60 (NMOS), 88 (PMOS).
- Gain x Bandwidth (GBW) [MHz] 1 (NMOS), 7 (PMOS).
- Phase Margin > 70°.

Two types of amplifiers were used:

- Single stage OTAs in active cascode stages and biasing. Depending on voltage level OTA use either NMOS or PMOS input differential pair.
- Two stage class AB operational amplifier for output current-to-voltage converter.

Single stage OTA – details:

- Architecture folded cascode.
- Power consumption $[\mu W] 3.5$ (NMOS), 25 (PMOS).
- Open loop Gain [dB] 60 (NMOS), 88 (PMOS).
- Gain x Bandwidth (GBW) [MHz] 1 (NMOS), 7 (PMOS).
- Phase Margin > 70°.

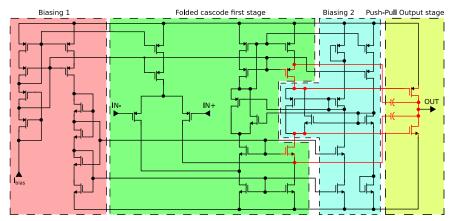
Two types of amplifiers were used:

- Single stage OTAs in active cascode stages and biasing. Depending on voltage level OTA use either NMOS or PMOS input differential pair.
- Two stage class AB operational amplifier for output current-to-voltage converter.

Single stage OTA – details:

- Architecture folded cascode.
- Power consumption $[\mu W] 3.5$ (NMOS), 25 (PMOS).
- Open loop Gain [dB] 60 (NMOS), 88 (PMOS).
- Gain x Bandwidth (GBW) [MHz] 1 (NMOS), 7 (PMOS).
- Phase Margin $> 70^{\circ}$.

Two types of amplifiers were used:


- Single stage OTAs in active cascode stages and biasing. Depending on voltage level OTA use either NMOS or PMOS input differential pair.
- Two stage class AB operational amplifier for output current-to-voltage converter.

Single stage OTA – details:

- Architecture folded cascode.
- Power consumption $[\mu W] 3.5$ (NMOS), 25 (PMOS).
- Open loop Gain [dB] 60 (NMOS), 88 (PMOS).
- Gain x Bandwidth (GBW) [MHz] 1 (NMOS), 7 (PMOS).
- Phase Margin > 70°.

Arch. Overview DAC Design Measurements New Design Assumptions Overview Layout

10 bit Low–Power Small–Area Current–Steering DAC design. Circuit Design – Class AB Operational Amplifier I.

Schematic of output class AB operational amplifier.

— Cascoded Miller compensation.

Class AB OP-AMP:

- Sooch cascode current mirror used for biasing.
- 1st stage build as a folded cascode.
- Bias of Push–Pull output stage designed as *floating current source*.
- Push–Pull output stage with cascoded Miller compensation technique.

- Better PSRR (Power Supply Rejection Ratio).
- 🖌 Needs 2–3 times smaller comp. cap. (wider bandwidth).
- Doesn't require resistor.
- X Complicated transfer function 3 poles and 2 zeros (problems with high frequency gain peak).

Class AB OP-AMP:

- Sooch cascode current mirror used for biasing.
- 1st stage build as a folded cascode.
- Bias of Push–Pull output stage designed as *floating current source*.
- Push–Pull output stage with cascoded Miller compensation technique.

- Better PSRR (Power Supply Rejection Ratio).
- Needs 2–3 times smaller comp. cap. (wider bandwidth).
- Doesn't require resistor.
- X Complicated transfer function 3 poles and 2 zeros (problems with high frequency gain peak).

Class AB OP-AMP:

- Sooch cascode current mirror used for biasing.
- 1st stage build as a folded cascode.
- Bias of Push–Pull output stage designed as *floating current source*.
- Push–Pull output stage with cascoded Miller compensation technique.

- Better PSRR (Power Supply Rejection Ratio).
- 🖌 Needs 2–3 times smaller comp. cap. (wider bandwidth).
- Doesn't require resistor.
- X Complicated transfer function 3 poles and 2 zeros (problems with high frequency gain peak).

Class AB OP-AMP:

- Sooch cascode current mirror used for biasing.
- 1st stage build as a folded cascode.
- Bias of Push–Pull output stage designed as *floating current source*.
- Push–Pull output stage with cascoded Miller compensation technique.

- Better PSRR (Power Supply Rejection Ratio).
- 🖌 Needs 2–3 times smaller comp. cap. (wider bandwidth).
- Doesn't require resistor.
- X Complicated transfer function 3 poles and 2 zeros (problems with high frequency gain peak).

Class AB OP-AMP:

- Sooch cascode current mirror used for biasing.
- 1st stage build as a folded cascode.
- Bias of Push–Pull output stage designed as *floating current source*.
- Push–Pull output stage with cascoded Miller compensation technique.

- Better PSRR (Power Supply Rejection Ratio).
- Needs 2–3 times smaller comp. cap. (wider bandwidth).
- Doesn't require resistor.
- X Complicated transfer function 3 poles and 2 zeros (problems with high frequency gain peak).

Class AB OP-AMP:

- Sooch cascode current mirror used for biasing.
- 1st stage build as a folded cascode.
- Bias of Push–Pull output stage designed as *floating current source*.
- Push–Pull output stage with cascoded Miller compensation technique.

- Better PSRR (Power Supply Rejection Ratio).
- Needs 2–3 times smaller comp. cap. (wider bandwidth).
- Doesn't require resistor.
- Complicated transfer function 3 poles and 2 zeros (problems with high frequency gain peak).

Class AB OP-AMP:

- Sooch cascode current mirror used for biasing.
- 1st stage build as a folded cascode.
- Bias of Push–Pull output stage designed as *floating current source*.
- Push–Pull output stage with cascoded Miller compensation technique.

- ✓ Better PSRR (Power Supply Rejection Ratio).
 - Needs 2–3 times smaller comp. cap. (wider bandwidth).
- Doesn't require resistor.
- Complicated transfer function 3 poles and 2 zeros (problems with high frequency gain peak).

Class AB OP-AMP:

- Sooch cascode current mirror used for biasing.
- 1st stage build as a folded cascode.
- Bias of Push–Pull output stage designed as *floating current source*.
- Push–Pull output stage with cascoded Miller compensation technique.

Cascoded Miller compensation technique pros and cons:

- ✓ Better PSRR (Power Supply Rejection Ratio).
- ✓ Needs 2–3 times smaller comp. cap. (wider bandwidth).
- Doesn't require resistor.

Complicated transfer function – 3 poles and 2 zeros (problems with high frequency gain peak).

Class AB OP-AMP:

- Sooch cascode current mirror used for biasing.
- 1st stage build as a folded cascode.
- Bias of Push–Pull output stage designed as *floating current source*.
- Push–Pull output stage with cascoded Miller compensation technique.

- ✓ Better PSRR (Power Supply Rejection Ratio).
- ✓ Needs 2–3 times smaller comp. cap. (wider bandwidth).
- Doesn't require resistor.
- Complicated transfer function 3 poles and 2 zeros (problems with high frequency gain peak).

Class AB OP-AMP:

- Sooch cascode current mirror used for biasing.
- 1st stage build as a folded cascode.
- Bias of Push–Pull output stage designed as *floating current source*.
- Push–Pull output stage with cascoded Miller compensation technique.

- ✓ Better PSRR (Power Supply Rejection Ratio).
- ✓ Needs 2–3 times smaller comp. cap. (wider bandwidth).
- Doesn't require resistor.
- Complicated transfer function 3 poles and 2 zeros (problems with high frequency gain peak).

Class AB OP-AMP parameters:

- Power consumption 65 $\mu W (+V_{dd} \cdot I_{out})$.
- Open loop gain 115 dB (for zero current load)
- GBW 2 MHz
- Phase Margin $> 75^{\circ}$.

• • = • • =

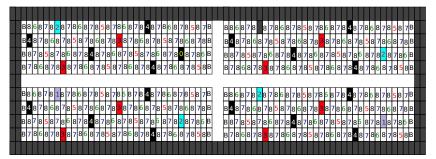
- Power consumption 65 $\mu W (+V_{dd} \cdot I_{out})$.
- Open loop gain 115 dB (for zero current load)
- GBW 2 MHz
- Phase Margin $> 75^{\circ}$.

- Power consumption 65 $\mu W (+V_{dd} \cdot I_{out})$.
- Open loop gain 115 dB (for zero current load)
- GBW 2 MHz
- Phase Margin $> 75^{\circ}$.

- Power consumption 65 $\mu W (+V_{dd} \cdot I_{out})$.
- Open loop gain 115 dB (for zero current load)
- GBW 2 MHz
- Phase Margin $> 75^{\circ}$.

- Power consumption 65 $\mu W (+V_{dd} \cdot I_{out})$.
- Open loop gain 115 dB (for zero current load)
- GBW 2 MHz
- Phase Margin $> 75^{\circ}$.

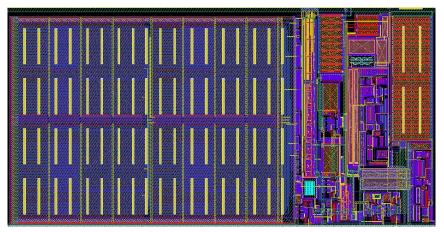
DAC Architecture Overview


10 bit Low–Power Small–Area Current–Steering DAC design.

- Specification
- Circuit Design.

Layout

- 3 1st Prototype Measurements Results
 - Static Measurements
 - Power Measurements
 - Transient Measurements
 - Comparison with other low-power 10 bit DACs
 - Possible Improvements.
- 4 Design of 2nd prototype Improvements.
 - Circuit.
 - Layout.


Layout 9 bit Current Sources Array.

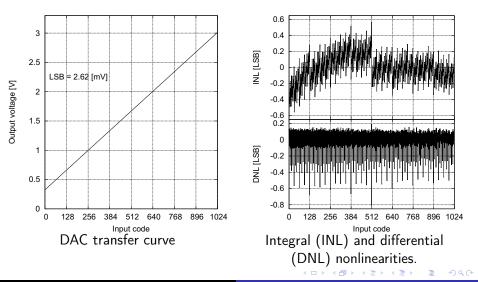
Block Diagram of DAC Matrix Layout.

-

Layout DAC Core.

Layout of 1^{st} prototype (295x595 μ m).

DAC Architecture Overview


- 2 10 bit Low–Power Small–Area Current–Steering DAC design.
 - Specification
 - Circuit Design.
 - Layout

3 1st Prototype Measurements Results

Static Measurements

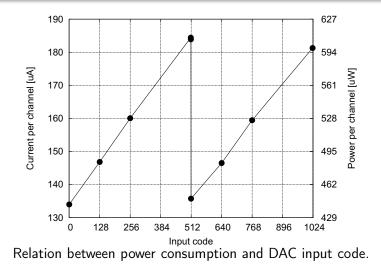
- Power Measurements
- Transient Measurements
- Comparison with other low-power 10 bit DACs
- Possible Improvements.
- 4 Design of 2nd prototype Improvements.
 - Circuit.
 - Layout.

1st Prototype Measurements Results Static Measurements I.

1st Prototype Measurements Results Static Measurements II.

	Channel no	1	2	3	4	5
b.	LSB value [mV]	2.62	2.59	2.62	2.64	2.68
chip	max. INL [LSB]	0.65	0.75	0.6	0.6	0.65
1 st	max. DNL [LSB]	1.1	0.9	1.1	0.9	1.05
	Codes of $ DNL > 0.5$	13	17	14	8	26
	Nr of missing values	4	0	2	0	3
	Channel no	1	2	3	4	5
chip	LSB value [mV]	2.58	2.59	2.62	2.61	2.63
ch	max. INL [LSB]	0.45	0.5	0.6	0.6	0.7
2 nd	max. DNL [LSB]	0.75	0.95	0.8	0.7	1.2
	Codes of $ DNL > 0.5$	15	2	29	22	20
	Nr of missing values	0	2	0	0	2

A B M A B M

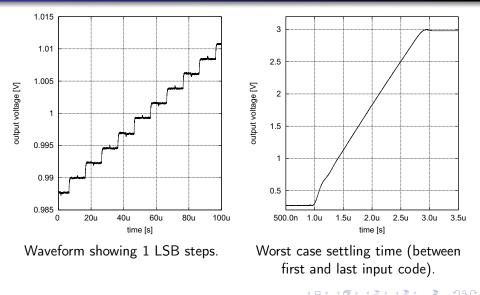

DAC Architecture Overview

- 2 10 bit Low–Power Small–Area Current–Steering DAC design.
 - Specification
 - Circuit Design.
 - Layout

3 1st Prototype Measurements Results

- Static Measurements
- Power Measurements
- Transient Measurements
- Comparison with other low-power 10 bit DACs
- Possible Improvements.
- 4 Design of 2nd prototype Improvements.
 - Circuit.
 - Layout.

1st Prototype Measurements Results Power Measurements


DAC Architecture Overview

- 2 10 bit Low–Power Small–Area Current–Steering DAC design.
 - Specification
 - Circuit Design.
 - Layout

3 1st Prototype Measurements Results

- Static Measurements
- Power Measurements
- Transient Measurements
- Comparison with other low-power 10 bit DACs
- Possible Improvements.
- Obsign of 2nd prototype Improvements.
 - Circuit.
 - Layout.

1st Prototype Measurements Results Transient Measurements.

DAC Architecture Overview

- 2 10 bit Low–Power Small–Area Current–Steering DAC design.
 - Specification
 - Circuit Design.
 - Layout

3 1st Prototype Measurements Results

- Static Measurements
- Power Measurements
- Transient Measurements

• Comparison with other low-power 10 bit DACs

• Possible Improvements.

4 Design of 2nd prototype – Improvements.

- Circuit.
- Layout.

	1	2	3	4	This work
architecture	current steering	R–2R ladder	resistor ladder	resistor string	current steering
technology	0.35 μm CMOS	0.18 μm CMOS	0.35 μm CMOS	0.13 μm CMOS	0.35 μm CMOS
power cons. [mW]	≤ 7.8	4	0.07 (analog part)	0.5	\leq 0.6
area [mm ²]	0.23	0.01	0.022	0.18	0.18
max INL [LSB]	0.2	0.75	0.7	2.0	0.6
max DNL [LSB]	0.2	0.7	0.35	0.5	0.8
speed	upd. rate 30 MS/s	low frequency	set. time 3 $\mu s/10 m m m m m m m m m m m m m $	upd. rate 2MS/s	worst t_{set} 2 μs 1 LSB t_r < 500 ns
output type	current ≤2.5mA	current <2.2mA	voltage without buffer	voltage high–swing	voltage high–swing

Comparison with other low-power 10 bit DACs

- 1 M. Borremans, A. Van den Bosch, M. Steyeart, W. Sansen, A low power 10-bit CMOS D/A converter for high speed applications, IEEE 2001 custom integrated circuits conference.
- 2 B. Greenlay, R. Veith, Dong-Young Chang, Un-Ku Moon, A low-voltage 10-bit CMOS DAC in 0.01-mm² die area, IEEE Transactions on Circuits and Systems, vol. 52, no 5, 2005.
- 3 Y. Perelman, R. Ginosar, A low-power inverted ladder D/A converter, IEEE Transactions on Circuits and Systems, vol. 53, no 6, 2006.
- 4 F. Ge, M. Trivedi, B. Thomas, W. Jiang, H. Song, 1.5V 0.5mW 2MSPS 10B DAC with rail-to-rail output in 0.13μm CMOS technology, SOC Conference, 2008/IEEE International. ≣ → Ω < <

DAC Architecture Overview

- 2 10 bit Low–Power Small–Area Current–Steering DAC design.
 - Specification
 - Circuit Design.
 - Layout

3 1st Prototype Measurements Results

- Static Measurements
- Power Measurements
- Transient Measurements
- Comparison with other low-power 10 bit DACs
- Possible Improvements.
- 4 Design of 2nd prototype Improvements.
 - Circuit.
 - Layout.

Possible Improvements.

What is not good:

- DNL higher than expected (over 0.5 LSB). Some missing values.
- Asymmetry of rise time for outputs signals input code with MSB = 1 and MSB = 0.

Solutions:

- Layout of current source matrix to be improved.
- Large time constant of linear current mirror sink.

伺き イヨト イヨト

Possible Improvements.

What is not good:

- DNL higher than expected (over 0.5 LSB). Some missing values.
- Asymmetry of rise time for outputs signals input code with MSB = 1 and MSB = 0.

Solutions:

- Layout of current source matrix to be improved.
- Large time constant of linear current mirror sink.

Possible Improvements.

What is not good:

- DNL higher than expected (over 0.5 LSB). Some missing values.
- Asymmetry of rise time for outputs signals input code with MSB = 1 and MSB = 0.

Solutions:

- Layout of current source matrix to be improved.
- Large time constant of linear current mirror sink.

- DAC Architecture Overview
- 2 10 bit Low–Power Small–Area Current–Steering DAC design.
 - Specification
 - Circuit Design.
 - Layout
- 3 1st Prototype Measurements Results
 - Static Measurements
 - Power Measurements
 - Transient Measurements
 - Comparison with other low-power 10 bit DACs
 - Possible Improvements.

Obsign of 2nd prototype – Improvements.

- Oircuit.
- Layout.

→ Ξ →

Circuit improvements:

- New layout of the current sources matrix.
- Small improvements in amplifiers design.
- Decreased dimensions of linear current mirror sink and adds trimming.

Parameters of amplifiers in 2nd prototype:

Circuit improvements:

- New layout of the current sources matrix.
- Small improvements in amplifiers design.
- Decreased dimensions of linear current mirror sink and adds trimming.

Parameters of amplifiers in 2nd prototype:

Circuit improvements:

- New layout of the current sources matrix.
- Small improvements in amplifiers design.
- Decreased dimensions of linear current mirror sink and adds trimming.

Parameters of amplifiers in 2nd prototype:

Design of 2nd prototype – Improvements.

Circuit improvements:

- New layout of the current sources matrix.
- Small improvements in amplifiers design.
- Decreased dimensions of linear current mirror sink and adds trimming.

Parameters of amplifiers in 2nd prototype:

Circuit improvements:

- New layout of the current sources matrix.
- Small improvements in amplifiers design.
- Decreased dimensions of linear current mirror sink and adds trimming.

Parameters of amplifiers in 2nd prototype:

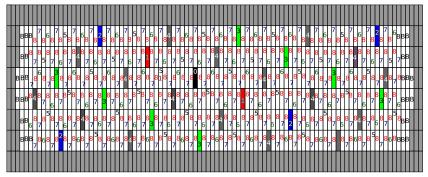
	OTA N	OTA P	OP-AMP
Gain [dB]	96	93	136
GBW [Hz] (10pF load)	65k	130k	3M
$PM\left[^{o} ight]\left(10pFload ight)$	96	90	70
Total power cons. $[\mu W]$	5	10	72.5

DAC Architecture Overview

- 2 10 bit Low–Power Small–Area Current–Steering DAC design.
 - Specification
 - Circuit Design.
 - Layout

3 1st Prototype Measurements Results

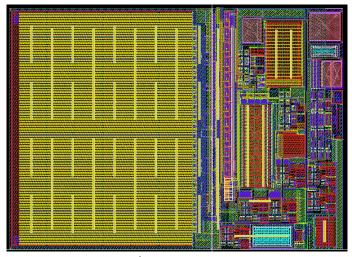
- Static Measurements
- Power Measurements
- Transient Measurements
- Comparison with other low-power 10 bit DACs
- Possible Improvements.


Obsign of 2nd prototype – Improvements.

- Circuit.
- Layout.

→ Ξ →

Arch. Overview DAC Design Measurements New Design Circuit. Layout.


Layout of 2^{nd} prototype – Improvements. 9 bit Current Sources Array.

Block Diagram of DAC Matrix Layout.

Arch. Overview DAC Design Measurements New Design Circuit. Layout.

Layout of 2^{nd} prototype – Improvements. DAC Core.

Layout of 2^{nd} prototype (385x530 μ m).

Dominik Przyborowski

Development of general purpose low-power small-area 10

Summary

- 1^{st} prototype of 10 bit DAC is fully functional.
- Measurements results are generally in good agreement with simulations:
 - Transfer curve LSB $\simeq 2.6~[mV]$
 - Integral Non–Linearity (INL) \simeq 0.6 [LSB]
 - Differential Non–Linearity (DNL) \simeq 0.8 [LSB]
 - Full scale settling time = 2 $[\mu s]$
 - 1 LSB settling time < 500 [ns].
- Differential non-linearity is slightly higher than expected attributed to CS matrix layout.
- Improved design is completed and ready for submission.