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Arch. Overview

DAC Architecture Overview
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analog output

Block diagram of digital-to—analog converter.

n—1
Vour = Z bk L2k Sref
k=0
S,er — reference value (voltage, current or charge).
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DAC Architecture Overview

Nyquist rate DACs architectures:

Oversampling DACs:
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Nyquist rate DACs architectures:

@ charge division,

Oversampling DACs:
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DAC Architecture Overview

Nyquist rate DACs architectures:

@ charge division,

@ resistor strings,

Oversampling DACs:
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DAC Architecture Overview

Nyquist rate DACs architectures:

@ charge division,

@ resistor strings,

@ voltage mode R-2R ladder,

Oversampling DACs:
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DAC Architecture Overview

Nyquist rate DACs architectures:

@ charge division,

@ resistor strings,
@ voltage mode R-2R ladder,

@ current mode R—2R ladder,

Oversampling DACs:

Dominik Przyborowski Development of general purpose low—power small-area 10



Arch. Overview

DAC Architecture Overview

Nyquist rate DACs architectures:

@ charge division,

@ resistor strings,
@ voltage mode R-2R ladder,

@ current mode R—2R ladder,

@ current steering.

Oversampling DACs:
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Arch. Overview

DAC Architecture Overview

Nyquist rate DACs architectures:

@ charge division,

@ resistor strings,
@ voltage mode R-2R ladder,

@ current mode R—2R ladder,

@ current steering.

Oversampling DACs:
@ Y — A modulators — not discussed here.
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DAC Architecture Overview

Charge Division.

., L. 1

Vout
s3 52 s1 50 :D——»

4 bit binary—weighted capacitor DAC.

4c 2C

Vref

=2

Cc N=1 k
Vout — _? : Z 2 Sk : Vref
f k=0
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DAC Architecture Overview

Charge Division.

., L. 1

Vout
s3 52 s1 50 :D——»

4 bit binary—weighted capacitor DAC.

4c 2C

Vref

=2

Cc N=1 k
Vout — _? : Z 2 Sk : Vref
f k=0

@ resolution up to 12 bits,
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DAC Architecture Overview

Charge Division.

A A S S S

Vout
s3 ) s1 S0 :D——»

4 bit binary—weighted capacitor DAC.

8C 4c

Vref

=2

Cc N=1 .
Vout — _? : Z 2 Sk : Vref
f k=0

@ resolution up to 12 bits,

@ low DC power consumption (only Op Amp and digital part)
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DAC Architecture Overview

Charge Division.

A A S S S

Vout
s3 52 s1 50 :D——»

4 bit binary—weighted capacitor DAC.

8C 4c

Vref

=2

Cc N=1 k
Vout — _? : Z 2 Sk : Vref
f k=0

@ resolution up to 12 bits,

@ low DC power consumption (only Op Amp and digital part)

@ requires refreshing (capacitors leakage current is ~ 1aA)
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DAC Architecture Overview

Resistor String.

N—-1
ST S -2k

k=0
E‘SUT Vout = T : Vref

3 bit resistor string DAC.
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DAC Architecture Overview

Resistor String.

N—-1
ST S -2k

k=0
E‘SUT Vout = T : Vref

@ Requires rail-to—rail Op Amp.

3 bit resistor string DAC.
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Arch. Overview

DAC Architecture Overview

Resistor String.

N—-1
ST S -2k

k=0
E‘SUT Vout = T : Vref

@ Requires rail-to—rail Op Amp.

@ Requires binary — 1 from N decoder.

3 bit resistor string DAC.
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DAC Architecture Overview
Resistor R—2R Ladder.

Vref— Vref—
a) Voltage mode b) Current mode
_ Re N Sn—ik - Vier _ Vier Re (N Sy_i
Vout = <1+R1) kz::l ok Vout = 5 1+ R ,(21212,\,_,( 1
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DAC Architecture Overview
Resistor R—2R Ladder — MOS implementation I.

Vref

T T T

L] I O I Y
8l 1=L 4l . 1=|. 21 ! 1:l_ | . 1
L

4 bit L-2L MOS Ladder DAC.
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DAC Architecture Overview
Resistor R—2R Ladder — MOS implementation II.

+Vdd
T

4

4 bit W-2W MOS Ladder DAC.
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DAC Architecture Overview
Resistor R—2R Ladder — MOS implementation IlI.

M-2M mismatch considerations

@ In M-2M network transistors in different operational points.

@ Matching in saturation region is determined by overdrive
voltage:

A2 2.100%- Ay, \> 1
ot = | + (A L

@ Matching of MOS transistors in triode region is affected by
output opamp offset:

2
A 100% - Ay, 1 AV, 2
L) = A tho| . 100% - s
o(la) W-L+<Vov—%vds W-L+( NV

@ Simulations results required special care — problem with
discontinuities of the BSIM transistors model.
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DAC Architecture Overview

Current Steering.

/ S0 / s1 / S2 s3

4 bit Current Steering DAC.
N—1

Vout:Iref'R' Z Sk'2k
K=0
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DAC Design Assumptions Overview Layout

Outline

© 10 bit Low—Power Small-Area Current-Steering DAC design.
@ Specification
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Specification

Considered architectures:

Chosen architecture:
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Specification

@ 10 bit resolution.

Considered architectures:

Chosen architecture:
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Specification

@ 10 bit resolution.

@ High swing voltage output.

Considered architectures:

Chosen architecture:
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Specification

@ 10 bit resolution.

@ High swing voltage output.

@ Low power consumption — below 1 [mW].

Considered architectures:

Chosen architecture:

Dominik Przyborowski Development of general purpose low—power small-area 10



DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Specification

@ 10 bit resolution.

@ High swing voltage output.
@ Low power consumption — below 1 [mW].

@ Small area.

Considered architectures:

Chosen architecture:
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Specification

@ 10 bit resolution.

@ High swing voltage output.
@ Low power consumption — below 1 [mW].

@ Small area.

Considered architectures:

o Current steering.

Chosen architecture:
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Specification

@ 10 bit resolution.

@ High swing voltage output.
@ Low power consumption — below 1 [mW].

@ Small area.

Considered architectures:

o Current steering.

@ Resistors ladder.

Chosen architecture:
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Specification

@ 10 bit resolution.

@ High swing voltage output.
@ Low power consumption — below 1 [mW].

@ Small area. J

Considered architectures:

o Current steering.

@ Resistors ladder.

A\

Chosen architecture:

@ Current steering — matching of MOS better than resistors.
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DAC Design Assumptions Overview Layout

Outline

© 10 bit Low—Power Small-Area Current-Steering DAC design.

@ Circuit Design.
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design.

1 9 bit unit current [ PMOS Transistors
() sources matrix (>< 32 biasing
512 active
1 ®ee e e e ., 224 dummy

3 layers of metal
about 600 paths

Interconnection network

1 ®® 000000, -
Binary scaled

PMOS differential
switches

Current switches <

lup ; ldown

Linear MSB ransimpedance
current mirror _ampllﬁer Wlth
sink with active ) P> @ high output swing
cascode stage and high output
Current Class AB urrent capabilit

mirror output OPAMP

Block diagram of proposed DAC.
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — 9 bit Current Sources Array .

Require for 9 bit resolution:

dlpmse < % -279.100% = 0.065%
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — 9 bit Current Sources Array .

Require for 9 bit resolution:

dlpmse < % -279.100% = 0.065%

Formulas for calculating dimensions:

w 2-Ip
T—m’ B = po - Cox
1 2- Ay 2
W-L>—— . |A2 th . 1009
N 02(/D) ﬁ+< Vov AJ) ]
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — 9 bit Current Sources Array .

Require for 9 bit resolution:

dlpmse < % -279.100% = 0.065%

Formulas for calculating dimensions:

w 2-Ip
T—m’ B = po - Cox
1 2- Ay 2
w.L> A2 ——th . 1009
N 02(/D) ﬁ+< Vov A)) ]

Mismatch parameters in used technology:

NMOS: Az =02[um-%] Ay, =82 [um-mV]
PMOS: Az =04 [um-%] Ay, =149 [um - mV]
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — 9 bit Current Sources Array |I.

Choice of transistors size:
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — 9 bit Current Sources Array |I.

Choice of transistors size:

@ Assumed LSB current = 100[nA]
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — 9 bit Current Sources Array |I.

Choice of transistors size:

@ Assumed LSB current = 100[nA]

@ Assumed current source overdrive voltage > 500[mV/]
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — 9 bit Current Sources Array |I.

Choice of transistors size:

@ Assumed LSB current = 100[nA]
@ Assumed current source overdrive voltage > 500[mV/]
@ Chosen transistor type — PMOS
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — 9 bit Current Sources Array |I.

Choice of transistors size:

@ Assumed LSB current = 100[nA]

@ Assumed current source overdrive voltage > 500[mV/]

@ Chosen transistor type — PMOS

@ Chosen W/L unit transistor ratio — 1/80 (V,, = 637[mV/])
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — 9 bit Current Sources Array |I.

Choice of transistors size:

Assumed LSB current = 100[nA]

Assumed current source overdrive voltage > 500[mV/]
Chosen transistor type — PMOS

Chosen W/L unit transistor ratio — 1/80 (V,, = 637[mV])

Calculated unit current source dimensions — 0.5./404

(]

e © ¢ ¢
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Current Switches.

2Vunit currelt
sources

unit current
sources

2N current
switches

2V ynit
current
switches

a) unary (best matching) b) binary (lowest area)
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Current Switches.

2Vunit currelt
sources

unit current
sources

2N current
switches

2V ynit

current
switches

a) unary (best matching) b) binary (lowest area)

Current switches — conclusion

To minimize area binary switching (b) was chosen.
Dimensions of LSB switch — 0.44/0.354.
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Current Source Array with Active Cascodes Stage.

i e e e i -l._ e S e i — S e i S S b |
!
| x32 | x1 x2 x128 | x256 |
N e ol
| b | . Current | I
Bias |/ J Lo Sources
I
Part | ‘ ° ‘ ‘

‘Iref ||_ |
| Veet " - _— = 1 =
s R |

gm o P gm
| = + R |

Rre .

I E " Il |, Active Cascodes I
v up down

L — J - - - - — — _— _— _— _1
Bias circuit, current sources array and active cascode stage.
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Active Cascode Stage.

Advantages of active cascodes:

-
Possibles problems:
ot
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Active Cascode Stage.

Advantages of active cascodes:

@ Drain current independent from channel modulation factor.

-
Possibles problems:
ot
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Active Cascode Stage.

Advantages of active cascodes:

@ Drain current independent from channel modulation factor.

@ Strongly increases output resistance:
Fout = K - gm * ras - rcs =~ 101 = 1010

-
Possibles problems:
ot
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Active Cascode Stage.

Advantages of active cascodes:

@ Drain current independent from channel modulation factor.

@ Strongly increases output resistance:
Fout = K - gm * ras - rcs =~ 101 = 1010

@ Glitch reduction.

-
Possibles problems:
ot
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Active Cascode Stage.

Advantages of active cascodes:

@ Drain current independent from channel modulation factor.

@ Strongly increases output resistance:
Fout = K - gm * ras - rcs =~ 101 = 1010

@ Glitch reduction.

Possibles problems:

@ Stability
‘ dominant pole ‘ nondominant pole ‘
p1 of OTA ng
G ==
8s K

-
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Active Cascode Stage.

Advantages of active cascodes:

@ Drain current independent from channel modulation factor.

@ Strongly increases output resistance:
Fout = K - gm * ras - rcs =~ 101 = 1010

@ Glitch reduction.

Possibles problems:

@ Stability
‘ dominant pole ‘ nondominant pole ‘
p1 of OTA ng
G ==
8s K

Needs minimum current!

-
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — High Swing Output Stage (Including Current Mirror Sink) I.

Vlup [ Idown Rfed
Linear Current

Mirror Sink MSB
______________ > ouT
"""""""""""" K
L s Sy +
"« M3 Class AB
> output
amplifier
:' '= Vref P
M‘} | |l: M'Z,"'

-
_____
......
________

High swing output circuit.
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — High Swing Output Stage II.

Relation between /4o, and /yp:
/down =511 /LSB - Bdec : /up

Bgec — decimal representation of input word (without MSB bit).

Output voltage:

Dominik Przyborowski Development of general purpose low—power small-area 10



DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — High Swing Output Stage II.

Relation between /4o, and /yp:
/down =511 /LSB - Bdec : /up

Bgec — decimal representation of input word (without MSB bit).

Output voltage:

@ MSB = 0: Vout = Vier — (511 — Byec) - ItsB - Rfed
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — High Swing Output Stage II.

Relation between /4o, and /yp:
/down =511 /LSB - Bdec : /up

Bgec — decimal representation of input word (without MSB bit).

Output voltage:

o MSB - 0: Vout S Vref - (511 — Bdec) : ILSB : RfEd
o MSB = 1: Vout = Vref + Bdec : ILSB : Rfed
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Single Stage OTAs.

Two types of amplifiers were used:

@ Single stage OTAs in active cascode stages and biasing.
Depending on voltage level OTA use either NMOS or PMOS

input differential pair.

@ Two stage class AB operational amplifier for output
current—to—voltage converter.

>

Single stage OTA — details:

A\
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Single Stage OTAs.

Two types of amplifiers were used:

@ Single stage OTAs in active cascode stages and biasing.
Depending on voltage level OTA use either NMOS or PMOS

input differential pair.

@ Two stage class AB operational amplifier for output
current—to—voltage converter.

>

Single stage OTA — details:

@ Architecture — folded cascode.

A\
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Single Stage OTAs.

Two types of amplifiers were used:

@ Single stage OTAs in active cascode stages and biasing.
Depending on voltage level OTA use either NMOS or PMOS

input differential pair.

@ Two stage class AB operational amplifier for output
current—to—voltage converter.

>

Single stage OTA — details:

@ Architecture — folded cascode.
@ Power consumption [uW] - 3.5 (NMOS), 25 (PMOS).

A\

Dominik Przyborowski Development of general purpose low—power small-area 10



DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Single Stage OTAs.

Two types of amplifiers were used:

@ Single stage OTAs in active cascode stages and biasing.
Depending on voltage level OTA use either NMOS or PMOS

input differential pair.

@ Two stage class AB operational amplifier for output
current—to—voltage converter.

>

Single stage OTA — details:

@ Architecture — folded cascode.
@ Power consumption [uW] - 3.5 (NMOS), 25 (PMOS).
@ Open loop Gain [dB] — 60 (NMOS), 88 (PMOS).

-
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Single Stage OTAs.

Two types of amplifiers were used:

@ Single stage OTAs in active cascode stages and biasing.
Depending on voltage level OTA use either NMOS or PMOS

input differential pair.

@ Two stage class AB operational amplifier for output
current—to—voltage converter.

>

Single stage OTA — details:

@ Architecture — folded cascode.

@ Power consumption [pW] - 3.5 (NMOS), 25 (PMOS).

@ Open loop Gain [dB] — 60 (NMOS), 88 (PMOS).

@ Gain x Bandwidth (GBW) [MHz] — 1 (NMOS), 7 (PMOS).

-
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Single Stage OTAs.

Two types of amplifiers were used:

@ Single stage OTAs in active cascode stages and biasing.
Depending on voltage level OTA use either NMOS or PMOS
input differential pair.

@ Two stage class AB operational amplifier for output
current—to—voltage converter.

>

Single stage OTA — details:

@ Architecture — folded cascode.

@ Power consumption [pW] - 3.5 (NMOS), 25 (PMOS).

@ Open loop Gain [dB] — 60 (NMOS), 88 (PMOS).

@ Gain x Bandwidth (GBW) [MHz] — 1 (NMOS), 7 (PMOS).
@ Phase Margin > 70°.

-
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Class AB Operational Amplifier I.

Biasing 1 Folded cascode first stage Biasing 2 Push-Pull Output stage
1 — =

C
&
=
+
[=
—4
T

Schematic of output class AB operational amplifier.

Cascoded Miller compensation.
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Class AB Operational Amplifier II.

Class AB OP-AMP:;
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Class AB Operational Amplifier II.

Class AB OP-AMP:;

@ Sooch cascode current mirror used for biasing.
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Class AB Operational Amplifier II.

Class AB OP-AMP:;

@ Sooch cascode current mirror used for biasing.

@ 1° stage build as a folded cascode.
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Class AB Operational Amplifier II.

Class AB OP-AMP:;

@ Sooch cascode current mirror used for biasing.

@ 1° stage build as a folded cascode.

@ Bias of Push—Pull output stage designed as floating current
source.
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Class AB Operational Amplifier II.

Class AB OP-AMP:;

@ Sooch cascode current mirror used for biasing.

@ 1° stage build as a folded cascode.

@ Bias of Push—Pull output stage designed as floating current
source.

@ Push—Pull output stage with cascoded Miller compensation
technique.
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Class AB Operational Amplifier II.

Class AB OP-AMP:;

@ Sooch cascode current mirror used for biasing.

@ 1° stage build as a folded cascode.

@ Bias of Push—Pull output stage designed as floating current
source.

@ Push—Pull output stage with cascoded Miller compensation
technique.

-

Cascoded Miller compensation technique pros and cons:

>
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Class AB Operational Amplifier II.

Class AB OP-AMP:;

@ Sooch cascode current mirror used for biasing.

@ 1° stage build as a folded cascode.

@ Bias of Push—Pull output stage designed as floating current
source.

@ Push—Pull output stage with cascoded Miller compensation
technique.

-

Cascoded Miller compensation technique pros and cons:

[1 Better PSRR (Power Supply Rejection Ratio).

>
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Class AB Operational Amplifier II.

Class AB OP-AMP:;

@ Sooch cascode current mirror used for biasing.

@ 1° stage build as a folded cascode.
@ Bias of Push—Pull output stage designed as floating current
source.

@ Push—Pull output stage with cascoded Miller compensation
technique.

-

Cascoded Miller compensation technique pros and cons:

[1 Better PSRR (Power Supply Rejection Ratio).
[ Needs 2-3 times smaller comp. cap. (wider bandwidth).

>
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Class AB Operational Amplifier II.

Class AB OP-AMP:;

@ Sooch cascode current mirror used for biasing.

@ 1° stage build as a folded cascode.

@ Bias of Push—Pull output stage designed as floating current
source.

@ Push—Pull output stage with cascoded Miller compensation
technique.

Cascoded Miller compensation technique pros and cons:
[1 Better PSRR (Power Supply Rejection Ratio).
[ Needs 2-3 times smaller comp. cap. (wider bandwidth).

[0 Doesn't require resistor.

>
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Class AB Operational Amplifier II.

Class AB OP-AMP:;

@ Sooch cascode current mirror used for biasing.

@ 1° stage build as a folded cascode.

@ Bias of Push—Pull output stage designed as floating current
source.

@ Push—Pull output stage with cascoded Miller compensation
technique.

.

Cascoded Miller compensation technique pros and cons:

[1 Better PSRR (Power Supply Rejection Ratio).
[ Needs 2-3 times smaller comp. cap. (wider bandwidth).
[0 Doesn't require resistor.

[0 Complicated transfer function — 3 poles and 2 zeros (problems
with high frequency gain peak).

o
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Class AB Operational Amplifier Ill.

Class AB OP-AMP parameters:
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Class AB Operational Amplifier Ill.

Class AB OP-AMP parameters:
@ Power consumption — 65 pW (+Vyqg - lout)-
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Class AB Operational Amplifier Ill.

Class AB OP-AMP parameters:
@ Power consumption — 65 pW (+Vyqg - lout)-

@ Open loop gain — 115 dB (for zero current load)
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Class AB Operational Amplifier Ill.

Class AB OP-AMP parameters:
@ Power consumption — 65 pW (+Vyqg - lout)-

@ Open loop gain — 115 dB (for zero current load)
o GBW -2 MHz
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DAC Design Assumptions Overview Layout

10 bit Low—Power Small-Area Current—Steering DAC design.

Circuit Design — Class AB Operational Amplifier Ill.

Class AB OP-AMP parameters:
@ Power consumption — 65 pW (+Vyqg - lout)-

@ Open loop gain — 115 dB (for zero current load)
o GBW -2 MHz
@ Phase Margin > 75°.
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DAC Design Assumptions Overview Layout

Outline

© 10 bit Low—Power Small-Area Current-Steering DAC design.

o Layout
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DAC Design Assumptions Overview Layout

Layout
DAC Core.

Layout of 1°¢ prototype (295x595um).
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Measurements Static Power Transient DACs Comparison Problems

Outline

© 1° Prototype Measurements Results
@ Static Measurements
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Measurements Static Power Transient DACs Comparison Problems

1%t Prototype Measurements Results

Static Measurements |.

0.6

3 04 td ]

0.2 | ] ENEEn |
25
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INL [LSB]

LSB = 2.62 [mV]

02 i ieis SR RRE |

-0.4 i

-0.6
0.2

0
-0.2

-
o

Output voltage [V]
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-0.4 ‘

[T

T

0.5

-0.6

-0.8
0
0 128 256 384 512 640 768 896 1024 0 128 256 384 512 640 768 896 1024

Input code

Input code
DAC transfer curve Integral (INL) and differential
(DNL) nonlinearities.
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Static Power Transient DACs Comparison Problems

Measurements

1%t Prototype Measurements Results

Static Measurements II.

Channel no 1 2 3 4 5
=Y LSB value [mV] 2.62 | 259 | 2.62 | 2.64 | 2.68
S [  max. [INL[[LSB] 065 |075| 06 | 0.6 | 0.65
% | max. [DNL|[LSB] 1.1 1 09 | 1.1 | 09 | 1.05
Codes of [IDNL| > 0.5 || 13 | 17 | 14 8 26
Nr of missing values 4 0 2 0 3
Channel no 1 2 3 4 5
o LSB value [mV] 258 | 259 | 262 | 2.61 | 2.63
S|  max. [INL[[LSB] 045 05 | 06 | 06 | 0.7
?\1 max. |DNL| [LSB] 075 |1095| 08 | 0.7 | 1.2
Codes of [IDNL| > 0.5 | 15 2 29 | 22 | 20
Nr of missing values 0 2 0 0 2
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Measurements Static Power Transient DACs Comparison Problems

Outline

© 1° Prototype Measurements Results

@ Power Measurements
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Measurements Static Power Transient DACs Comparison Problems

1%t Prototype Measurements Results

Power Measurements

190 : 627
180 /. 2 504
170 561
160 528

Current per channel [uA]
Power per channel [uW]

150 % / 495
140 / / 462
V ./

130 429
0 128 256 384 512 640 768 896 1024

. Input code . .
Relation between power consumption and DAC input code.
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Measurements Static Power Transient DACs Comparison Problems

Outline

© 1° Prototype Measurements Results

@ Transient Measurements
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Measurements Static Power Transient DACs Comparison Problems

1%t Prototype Measurements Results

Transient Measurements.

1.015
3
1.01 A
J.»J .
— 1.005 r‘ —
= =
) f g 2
©
S 1 [ 2
> >
2 5 15
3 0.995 r 3
Ju )
0.99 “I
j 0.5
0.985
0 20u 40u 60u 80u 100u 500.0n 1.0u 15u 2.0u 25u 3.0u 3.5u
time [s] time [s]
Waveform showing 1 LSB steps. Worst case settling time (between

first and last input code).
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Measurements Static Power Transient DACs Comparison Problems

Outline

© 1° Prototype Measurements Results

@ Comparison with other low—power 10 bit DACs
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Measurements

Comparison with other low—power 10 bit DACs

Static Power

Transient DACs Comparison

Problems

1 [ 2 3 4 Il This work |
architecture current R—2R resistor resistor current
steering ladder ladder string steering
technology 0.35 um 0.18 um 0.35 um 0.13 um 0.35 um
CMOS CMOS CMOS CMOS CMOS
power <78 4 0.07 0.5 < 0.6
cons. [mW] (analog part)
area 0.23 0.01 0.022 0.18 0.18
[mm?]
max INL 0.2 0.75 0.7 2.0 0.6
[LSB]
max DNL 0.2 0.7 0.35 0.5 0.8
[LSB]
speed upd. rate low set. time upd. rate worst tset 2 S
30 MS/s frequency 3 us/10pF 2MS/s 1LSB t, < 500 ns
output current current voltage voltage voltage
type <2.5mA <2.2mA without buffer high—swing high—swing

1 M. Borremans, A. Van den Bosch, M. Steyeart, W. Sansen, A low power 10-bit CMOS D/A
converter for high speed applications, IEEE 2001 custom integrated circuits conference.

2 B. Greenlay, R. Veith, Dong—Young Chang, Un—Ku Moon, A low-voltage 10-bit CMOS DAC in
0.01-mm? die area, |IEEE Transactions on Circuits and Systems, vol. 52, no 5, 2005.

3 Y. Perelman, R. Ginosar, A low—power inverted ladder D/A converter, IEEE Transactions on
Circuits and Systems, vol. 53, no 6, 2006.

4 F. Ge, M. Trivedi, B. Thomas, W. Jiang, H. Song, 1.5V 0.5mW 2MSPS 10B DAC with
rail-to—rail output in 0.13um CMOS technology, SOC Conference, 2008/IEEE International.
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Measurements Static Power Transient DACs Comparison Problems

Outline

© 1° Prototype Measurements Results

@ Possible Improvements.
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Measurements Static Power Transient DACs Comparison Problems

Possible Improvements.

What is not good:
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Measurements Static Power Transient DACs Comparison Problems

Possible Improvements.

What is not good:
@ DNL higher than expected (over 0.5 LSB).
Some missing values.

4

@ Layout of current source matrix to be improved.
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Measurements Static Power Transient DACs Comparison Problems

Possible Improvements.

What is not good:
@ DNL higher than expected (over 0.5 LSB).
Some missing values.

@ Asymmetry of rise time for outputs signals input code with
MSB = 1 and MSB = 0.

v

@ Layout of current source matrix to be improved.

@ Large time constant of linear current mirror sink.
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New Design  Circuit. Layout.

Outline

Q Design of 2" prototype — Improvements.
o Circuit.
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New Design  Circuit. Layout.

Design of 2"¢ prototype — Improvements.

Circuit improvements:
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New Design  Circuit. Layout.

Design of 2"¢ prototype — Improvements.

Circuit improvements:

@ New layout of the current sources matrix.
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New Design  Circuit. Layout.

Design of 2"¢ prototype — Improvements.

Circuit improvements:
@ New layout of the current sources matrix.

@ Small improvements in amplifiers design.
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New Design  Circuit. Layout.

Design of 2"¢ prototype — Improvements.

Circuit improvements:
@ New layout of the current sources matrix.

@ Small improvements in amplifiers design.
@ Decreased dimensions of linear current mirror sink and adds
trimming.
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New Design  Circuit. Layout.

Design of 2"¢ prototype — Improvements.

Circuit improvements:

@ New layout of the current sources matrix.
@ Small improvements in amplifiers design.

@ Decreased dimensions of linear current mirror sink and adds
trimming.

-

Parameters of amplifiers in 279 prototype:

| [OTAN [ OTA P | OP-AMP |

Gain [dB] 9% 03 136

GBW [Hz] (10pF load) | 65k | 130k 3M
PM [°] (10pF load) 9 90 70
Total power cons. [uW] 5 10 72.5

A\
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New Design  Circuit. Layout.

Outline

Q Design of 2" prototype — Improvements.

o Layout.
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New Design  Circuit. Layout.

Layout of 2" prototype — Improvements.
9 bit Current Sources Array.

Block Diagram of DAC Matrix Layout.
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Circuit.
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[a]
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=4

Layout of 2" prototype (385x530um).
Dominik Przyborowski

Layout of 2" prototype — Improvements.




@ 1°t prototype of 10 bit DAC is fully functional.

@ Measurements results are generally in good agreement with
simulations:

Transfer curve — LSB ~ 2.6 [mV]

Integral Non—Linearity (INL) ~ 0.6 [LSB]
Differential Non—Linearity (DNL) ~ 0.8 [LSB]
Full scale settling time = 2 [us]

s 1 LSB settling time < 500 [ns].

¢ € ¢ ¢

@ Differential non—linearity is slightly higher than expected —
attributed to CS matrix layout.

@ Improved design is completed and ready for submission.
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