Investigation of M – 2M and Exponential Digital–to–Analog Converters

Dominik Przyborowski

Department of Particle Interactions and Detection Techniques Nuclear Electronics and Radiation Detection Group

May 10, 2010

.

1 8 bits M-2M DACs

- Goals of Design
- Principle of Operation
- Mismatch Consideration
- Implementation
- Design of Output OPAMP
- Layout

2 Exponential 7-bit DAC

- Idea
- Implementation
- Simulation results
- Layout

1 8 bits M-2M DACs

Goals of Design

- Principle of Operation
- Mismatch Consideration
- Implementation
- Design of Output OPAMP
- Layout

2 Exponential 7-bit DAC

- Idea
- Implementation
- Simulation results
- Layout

.∃ ▶ . ∢

Goals of Design

- Static 8 bits DAC
- Low power consumption $< 100 \ \mu W$
- Small core size $< 0.05 mm^2$

Destination

Fine adjustment of voltages in every channel

Proposed architecture

M-2M Ladder

- Small number of elements (4N+1)
- Simple layout

Dominik Przyborowski Investigation of M – 2M & Exponential DACs

096

Goals of Design

- Static 8 bits DAC
- Low power consumption $< 100 \ \mu W$
- Small core size $< 0.05 mm^2$

Destination

Fine adjustment of voltages in every channel

Proposed architecture

M–2M Ladder

- Small number of elements (4N+1)
- Simple layout

200

Goals of Design

- Static 8 bits DAC
- Low power consumption <~ 100 μW
- Small core size $< 0.05 mm^2$

Destination

Fine adjustment of voltages in every channel

Proposed architecture

M–2M Ladder

- Small number of elements (4N+1)
- Simple layout

Dominik Przyborowski Investigation of M – 2M & Exponential DACs

Goals of Design

- Static 8 bits DAC
- Low power consumption $<~100~\mu W$
- Small core size $< 0.05 mm^2$

Destination

Fine adjustment of voltages in every channel

Proposed architecture

M–2M Ladder

- Small number of elements (4N+1)
- Simple layout

- 1 8 bits M-2M DACs
 - Goals of Design
 - Principle of Operation
 - Mismatch Consideration
 - Implementation
 - Design of Output OPAMP
 - Layout
- 2 Exponential 7-bit DAC
 - Idea
 - Implementation
 - Simulation results
 - Layout

.∃ ▶ . ∢

8 bits M–2M DACs Principle of Operation

MOS transistor equivalent circuit

Current flowing into series-parallel identically designed transistors is equally divided between them

1 8 bits M-2M DACs

- Goals of Design
- Principle of Operation

Mismatch Consideration

- Implementation
- Design of Output OPAMP
- Layout

2 Exponential 7-bit DAC

- Idea
- Implementation
- Simulation results
- Layout

.∃ ▶ . ∢

8 bits M-2M DACs Mismatch Consideration

Mismatch considerations

Matching in saturation region is determined by overdrive voltage:

$$\sigma(I_d) = \sqrt{\frac{A_{\beta}^2}{W \cdot L}} + \left(\frac{2 \cdot 100\% \cdot A_{V_{th}}}{V_{ov}}\right)^2 \cdot \frac{1}{W \cdot L}$$

 Matching of MOS transistors in triode region is affected by output opamp offset:

$$\sigma(I_d) = \sqrt{\frac{A_{\beta}^2}{W \cdot L} + \left(\frac{100\% \cdot A_{V_{th}}}{V_{ov} - \frac{1}{2}V_{ds}}\right)^2 \cdot \frac{1}{W \cdot L} + \left(100\% \cdot \frac{\Delta V_{ds}}{V_{ds}}\right)^2}$$

→ ∃ → → ∃

1 8 bits M-2M DACs

- Goals of Design
- Principle of Operation
- Mismatch Consideration

Implementation

- Design of Output OPAMP
- Layout

2 Exponential 7-bit DAC

- Idea
- Implementation
- Simulation results
- Layout

.∃ ▶ . ∢

8 bits M–2M DACs Implementation

- Logic "1" must be equal V_{bias}
- Two modes of operation current division $(I_{in} \neq 0)$ or current source/sink $(I_{in} = 0)$
- Transistors can work in various regions of operation
- Simulations results required *special care* problem with discontinuities of the BSIM transistors model.

8 bits M-2M DACs Implementation

Nominal parameters

• $V_{LSB} = 0.5 mV$

•
$$I_{LSB} = 25nA \ (R_f = 20k\Omega)$$

• $V_{bias} \simeq 1.2V$ (NMOS) or $\simeq 1.45V$ (PMOS)

•
$$V_{ref} \in (1:2)V$$

•
$$P_{\textit{ladder}}\simeq 20 \mu W$$

Transistor dimensions

• NMOS Ladder:

$$\frac{W}{L} = \frac{5\mu}{25\mu}$$

PMOS Ladder:

$$\frac{W}{L} = \frac{7.5\mu}{30\mu}$$

Dominik Przyborowski Investigation of M - 2M & Exponential DACs

ヘロト ヘ部ト ヘヨト ヘヨト

1 8 bits M-2M DACs

- Goals of Design
- Principle of Operation
- Mismatch Consideration
- Implementation

Design of Output OPAMP

Layout

2 Exponential 7-bit DAC

- Idea
- Implementation
- Simulation results
- Layout

.∃ ▶ . ∢

Design goals

- Low offset < 5 mV most important
- Low noise < 0.2 mV
- Low power $< 50 \ \mu W$
- Output current capability $> 100 \ \mu A$

Low offset diff–amp design

$$\frac{V_{os} = V_{GS_1} - V_{GS_2} \approx}{\sqrt{\sigma_{V_{Th_N}}^2 + \frac{I \cdot \sigma_{I_P}^2}{g_{m_N}} + \frac{V_{od_N}^2 \cdot \sigma_{\beta_N}^2}{4}}}$$

Conclusion:

Design goals

- Low offset < 5 mV most important
- Low noise $< 0.2 \ mV$
- Low power $< 50 \ \mu W$
- Output current capability $> 100 \ \mu A$

Low offset diff-amp design

Conclusion:

Design goals

- Low offset < 5 mV most important
- Low noise $< 0.2 \ mV$
- Low power $< 50 \ \mu W$
- Output current capability $> 100 \ \mu A$

Low offset diff-amp design

$$V_{os} = V_{GS_1} - V_{GS_2} \approx \sqrt{\sigma_{V_{Th_N}}^2 + \frac{I \cdot \sigma_{I_P}^2}{g_{m_N}} + \frac{V_{od_N}^2 \cdot \sigma_{\beta_N}^2}{4}}$$

Conclusion:

Design goals

- Low offset < 5 mV most important
- Low noise $< 0.2 \ mV$
- Low power $< 50 \ \mu W$
- Output current capability $> 100 \ \mu A$

Low offset diff-amp design

$$V_{os} = V_{GS_1} - V_{GS_2} \approx \sqrt{\sigma_{V_{Th_N}}^2 + \frac{I \cdot \sigma_{I_P}^2}{g_{m_N}} + \frac{V_{od_N}^2 \cdot \sigma_{\beta_N}^2}{4}}$$

Conclusion:

8 bits M-2M DACs Design of Output OPAMP - implementation and results

Implementation

Simulation results

- Quiscent power = 60.6 μW (I_{bias} = 500nA)
- DC Gain (quiscent) = 108.8 dB
- Phase Margin (quiscent) = 72° (10 pF load)
- Input offset $(1\sigma) = 2 \text{ mV}$
- Noise rms = 105 μV (10 pF load)
- Gain Bandwitdh Product = 2.1 MHz (10 pF load)
- Output current capability = 4 mA

つくぐ

8 bits M-2M DACs Design of Output OPAMP - implementation and results

Implementation

Simulation results

- Quiscent power = 60.6 μW ($I_{bias} = 500 nA$)
- DC Gain (quiscent) = 108.8 dB
- Phase Margin (quiscent) = 72° (10 pF load)
- Input offset (1σ) = 2 mV
- Noise rms = 105 µV (10 pF load)
- Gain Bandwitdh Product = 2.1 MHz (10 pF load)
- Output current capability = 4 mA

8 bits M-2M DACs Design of Output OPAMP - layout

Layout – 119 \times 57 μm^2

1 8 bits M-2M DACs

- Goals of Design
- Principle of Operation
- Mismatch Consideration
- Implementation
- Design of Output OPAMP

Layout

2 Exponential 7-bit DAC

- Idea
- Implementation
- Simulation results
- Layout

E ▶ 4

A = A A =
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

э

8 bits M–2M DACs Layout

NMOS L–2L DAC – core area = $295 \times 116 \mu m^2$

(日) (同) (三) (三)

э

8 bits M–2M DACs Layout

PMOS L-2L DAC – core area = $340 \times 125 \mu m^2$

1 8 bits M-2M DACs

- Goals of Design
- Principle of Operation
- Mismatch Consideration
- Implementation
- Design of Output OPAMP
- Layout

2 Exponential 7-bit DAC

- Idea
- Implementation
- Simulation results
- Layout

3 Conclusion

.∃ ▶ . ∢

Exponential 7-bit DAC Idea of circuit

Goals of design

- Biasing DAC with a few orders of magnitude of output current (power scalling)
- Relatively low area and number of bits
- About 10 % of increment step

Proposition – exponential transfer function, with 8.5% increment and 7 bits resolution

つへぐ

Exponential 7-bit DAC Idea of circuit

Goals of design

- Biasing DAC with a few orders of magnitude of output current (power scalling)
- Relatively low area and number of bits
- About 10 % of increment step

Proposition – exponential transfer function, with 8.5% increment and 7 bits resolution

Input	Output current [I _{LSB}]
0	1
1	1.09
• • •	
15	3.58
16	3.90
•••	
127	48 776.31

Exponential 7-bit DAC

Implementation

Solution – 8 4–bits subDACs

Input	Ideal weigths	Implemented weigths	Mismatch (%)
0	1	1	0
1	1.09	1.1	1.04
2	1.19	1.2	1.24
3	1.29	1.3	0.74
4	1.40	1.45	3.21
5	1.53	1.6	4.6
6	1.67	1.75	5.09
7	1.81	1.9	4.8
8	1.97	2.1	6.39
9	2.15	2.3	7.03
10	2.34	2.5	6.85
11	2.55	2.7	6
12	2.77	2.95	6.38
13	3.02	3.2	5.99
14	3.29	3.45	4.96
15	3.58	3.7	3.39
0 (next stage)	3.90	4	2.66

Dominik Przyborowski Investigation of M – 2M & Exponential DACs

 $) \land \bigcirc$

1 8 bits M-2M DACs

- Goals of Design
- Principle of Operation
- Mismatch Consideration
- Implementation
- Design of Output OPAMP
- Layout

2 Exponential 7-bit DAC

Idea

Implementation

Simulation results

Layout

3 Conclusion

Exponential 7-bit DAC Implementation

Block diagram of Exp–DAC

Dimensions of SubDACs Current Sources

SubDAC No	0	1	2	3	4	5	6	7	
Unit CS $\frac{W}{L}$	<u>0.4</u> 28	<u>0.4</u> 7.5	<u>0.4</u> 28	$\frac{0.4}{7}$	<u>0.7</u> 7.5	$\frac{1.4}{3.75}$	<u>0.8</u> 5	$\frac{1.6}{2.5}$	

• • = • • =

э

Exponential 7-bit DAC Implementation

Schematic of biasing circuit

1 8 bits M-2M DACs

- Goals of Design
- Principle of Operation
- Mismatch Consideration
- Implementation
- Design of Output OPAMP
- Layout

2 Exponential 7-bit DAC

- Idea
- Implementation
- Simulation results
- Layout

3 Conclusion

∃ >

Exponential 7-bit DAC Simulation results - DC

DC characteristic

< 口 > < 同

A = A A =
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Exponential 7-bit DAC Simulation results - Monte Carlo Worst Cases

Monte Carlo & Worst Cases

Dominik Przyborowski Investigation of M – 2M & Exponential DACs

1 8 bits M-2M DACs

- Goals of Design
- Principle of Operation
- Mismatch Consideration
- Implementation
- Design of Output OPAMP
- Layout

2 Exponential 7-bit DAC

- Idea
- Implementation
- Simulation results

Layout

3 Conclusion

∃ ▶ ∢

Exponential 7-bit DAC Layout

Core area 725 imes 93 μm

< 口 > < 同

A = A A =
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

э

Conclusion

M-2M DAC

- M-2M ladder seems to be promising Low-power and Small-area DAC architecture.
- Offset of output OPAMP is main resolution limitation for ladder working in triode region.
- Simulation results should be done using EKV MOS model usually not delivered with the technology.
- The measurements tell us the truth

Exp DAC

- The 7-bits DAC with exponential transfer function is designed.
- 5 order of magnitude of output current with similar area to linear DAC.
- Used as biasing circuit should be ideally for ASICs with aggressive power scalling.

Conclusion

M-2M DAC

- M–2M ladder seems to be promising Low–power and Small-area DAC architecture.
- Offset of output OPAMP is main resolution limitation for ladder working in triode region.
- Simulation results should be done using EKV MOS model usually not delivered with the technology.
- The measurements tell us the truth

Exp DAC

- The 7-bits DAC with exponential transfer function is designed.
- 5 order of magnitude of output current with similar area to linear DAC.
- Used as biasing circuit should be ideally for ASICs with aggressive power scalling.