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Specific algorithms for the elaboration and the digital filtering of signals generated in nuclear-particle

detectors have been studied and optimized. These algorithms will contribute to build up a data

acquisition system to be drawn on the next generation of hadron physics experiments. Working in a

non-stationary environment, adaptive filters can optimize in a dynamic way the retrieval of information

in the tracking of charged particles. In this paper, the performances of different simulated filters are

presented, and their simulations discussed.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

The standard architecture of data acquisition systems (DAQ) in
nuclear detectors is based on a two-layer hierarchical approach.
A subset of especially instrumented detectors is used to evaluate a
first-level trigger condition. For the accepted events, the full
information of all detectors is then transported to the next higher
trigger level or to storage. The time available for the first-level
decision is usually limited by the buffering capabilities of the
front-end electronics [1–3].

The next generation of experiments in the hadron facilities, like
the FAIR one at Darmstadt [4], will study rare events at a
drastically improved sensitivity. Interesting signals will only
become available by a combination of high interaction rates
(normally higher than 10 MHz), fast detectors and broad band-
width data acquisition systems to select in a fitting way only the
events of interest. These constraints make it necessary to go
beyond the old two-layer hierarchical approach towards self-
trigger systems. They autonomously detect signals and pre-
process them to extract and transmit only the physically relevant
information, marked by a precise time stamp and buffered for
further processing. This means that they are able to discriminate
how relevant the event is and, if required to select it, to select
means to filter in the right way and dynamically the signals
(see for example Ref. [5]).
ll rights reserved.
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This research unit aims to develop a data acquisition system
through the study of specific algorithms for the reliable detection
of ‘‘informative’’ pulses (i.e., the pulses generated by the
interaction of a charged particle) partially buried in noise, as well
as their implementation on electronic boards which use pro-
grammable devices.

As a starting point, the performance of a set of standard digital
filters for signal denoising (Low-Pass (LP): Bessel, Butterworth,
Chebyshev) have already been studied and characterized. How-
ever, using this kind of filters the Signal to Noise Ratio (SNR)
cannot be sufficiently enhanced. Dealing with a non-stationary
environment, adaptive filters look as a better choice to solve our
problem. We have focussed on the application of Least Mean
Square (LMS) adaptive filter [6,7,9]. The filtering systems have
been studied, modelled, and simulated with specific programming
languages (MATLAB, SIMULINK [10]).

The paper is organized as follows. In Section 2, the system
model is introduced. Simulation scheme is presented in Section 3.
In Section 4, standard and adaptive algorithms are described. The
comparisons are dealt in Section 5. The paper is concluded with a
discussion on the obtained results and an outlook to further
developments in Section 6.
2. System model

When a charged particle is detected, the detector produces a
current pulse that is processed through a transmission chain. This
signal is affected by several causes of noise (thermal, shot, flicker,
etc.) which impair the correct pulse detection.

www.sciencedirect.com/science/journal/nima
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We aim to develop a filtering system able to reduce this noise
as much as possible. The elaboration will be performed in the
digital domain and for this reason the signal must be processed by
an Analog to Digital Converter (ADC). However, because of the
reduced input bandwidth (20 MHz) and the sampling rate of the
ADCs currently available, the bandwidth of the input signal
(i.e., informative pulses plus noise) has to be properly reduced.
Thus, a low-pass analog transmission chain had to be introduced
before the ADC [11]. A possible model is presented in Fig. 1,
together with a pictorial representation of the impulse response.

The analog section is composed of the following:
�

DeDe
Detector: it detects charged particles and produces informative
pulses with amplitude proportional to the charge (Q).

�
 Preamplifier/integrator: it integrates the input signal and at the

same time reduces the bandwidth. When the current pulse is
present, the integrator produces a signal proportional to the
charge. The gain kp is used to normalize the peak to a fixed
value; tp is the time constant of the preamplifier/integrator.

�
 PoleZero compensator: it introduces a faster pole erasing the

preamplifier one, in order to enlarge the total pass-band and
thus to avoid as much as possible distortion of the informative
pulses, which can cause a pile-up effect of the filtered pulses.
The gain kpz is used to normalize the peak to a fixed value,
while the time constant tpz5tp.

�
 Analog shaper/antialias filter: it represents the final LP anti-

aliasing filter, opportunely matched to the ADC input band-
width and sampling rate. In practice, it enlarges the top of the
signal, allowing the ADC to obtain more than one significant
sample for each informative pulse. The gain kAS is used to
normalize the peak to a fixed value, tAS ¼ 1/fB is the time
constant, where fB is the desired signal band, and n is the
denominator exponent. The factor n determines the slope of
the transfer function in the transition bandwidth and the top
flatness of the signal. However, the higher the parameter n is,
the more difficult the hardware assemblies are. Hence, n was
chosen as a compromise between the hardware complexity
and the minimization of the sampling error.
After these three blocks the filtered signal is ready to be
elaborated by the digital sub-chain (Fig. 2)

�
 ADC: it converts the analog signal into a digital one.

�
 Noise filter: it is digital and is designed to possibly reduce the

noise that affects the desired signal. It can be standard or
adaptive, with Finite (FIR) or Infinite (IIR) Impulse Response.

3. Simulation scheme

In order to evaluate the improvement obtained using a digital
filter to partially suppress the noise, in our simulation we
modelled the information pulses with a series of successive finite
support waveforms, with very narrow time duration (0.5 ns) and
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Fig. 1. Analog transmission sub-chain.
random times of arrival. No specific assumptions have been made
at this stage about the mathematical model of the times of arrival,
since experimental results are not still available. However,
superimposed input pulses have been explicitly avoided. The
pulses series are processed by the transmission chain model and
the selection of the noise model has been essentially driven by the
sake of simplicity. Thus, an additive White Gaussian Noise (WGN)
model has been chosen and the addition stage has been placed
right before the ADC device, as shown in Fig. 3. This can represent
a situation where the noise has a significantly wider bandwidth
than the signal of interest (pulses).

We evaluated by simulation the behaviour of several digital
filters (using MATLAB, SIMULINK [10]). In particular, we
focused on
�
 standard LP III order Butterworth filter;

�
 adaptive LMS filter.
Aiming at the best noise reduction, we compared the output of
every digital filter to the digitalized output of the analog shaper.
The results are presented in the following section.
4. Digital conversion and filtering algorithms

Let us consider the detection of two charged particles. The
detector will produce two short current pulses with the amplitude
proportional to the charge carried by every single particle.

In our simulation the two amplitudes are different, the first is
equal to 1 (normalized current unit) and the second to 0.5; the
pulse duration is 0.5 ns, while the interarrival time is 0.7ms. The
bandwidth used to digitally represent the analog section is 5 GHz,
while the digital bandwidth after the ADC is reduced to 50 MHz.

The impulse response of the analog blocks is summed up in
Fig. 4.

Adding to the shaper output a WGN signal one-sixth less
powerful at the same sampling rate, we obtain a simulation of a
noisy analog measurement (Fig. 5).

Putting our attention on the analog shaper output, Fig. 5a
represents the desired signal we aim to extract from a noisy
measurement (Fig. 5b), after sampling and quantization. Note that
the sampling operation is a simple down-sampling in our
simulation. Quantization is performed by the model of ADC
introduced in Section 3.

Performing the Discrete Fourier Transform (DFT) of the
digitalized analog shaper output, we have its representation in
the frequency domain. Its square modulus provides the Power
Spectral Density (PSD) of the considered signal; it is a useful
mathematical tool that shows the most important frequency
components in the signal spectrum.

In Fig. 6 we can see the PSD of the analog shaper output, where
the signal power has been normalized to the unit. The most
significant frequencies are bounded in the lower part of the
spectrum; as a consequence, the starting point of our analysis is a
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Fig. 3. Simulated transmission chain.
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LP digital filter. Furthermore, Shannon Theorem is satisfied
because the band involved is 20 MHz and we sample this signal
with a sampling frequency of 100 MHz (42�20 MHz).
4.1. Butterworth LP digital filter

For the sake of comparison, the SNR and the ‘‘peak reprodu-
cibility’’ are reported in Tables 1 and 2 where different standard
filter families and orders are considered. The SNR is calculated as
the ratio between the desired signal power and the noise power,
expressed in dB. The ‘‘peak reproducibility’’, or percentage error, is
defined as the relative difference between the desired signal peak
and the filtered one, expressed in percentage. In case of several
peaks, we decided to focus on the case with the highest distortion.
The percentages shown in Table 2 all refer to the same worse
condition.

From these characterizations the best performances both in
noise reduction and in peak reproducibility are obtained with the
Butterworth family. The highest noise reduction is obtained with
the III order transfer function, while the highest peak reproduci-
bility (lowest percentage error) is obtained with the II order.
We chose the III order because our aim was the noise reduction
and we set the cut-off frequency to 20 MHz, i.e., to the bandwidth
of the input signal. The normalized transfer function in the
continuous complex frequency domain is

HðsÞ ¼
1

s3 þ 2s2 þ 2sþ 1
.

To convert this analog transfer function in the digital domain,
we used a digital transfer function H(z) obtained from bilinear
transform of H(s) [12].

A typical implementation of the digital IIR filter corresponding
to H(z) is the direct form II, where x(n) is the input noised signal
and y(n) the output filtered signal (Fig. 7).

4.2. MMSE noise canceller

The standard III order LP Butterworth analog filter has fixed
parameters (transfer function coefficients) that are known and
calculated with Butterworth III order polynomials [8], denorma-
lized at a particular cut-off frequency, bilinear transformed
and then implemented in the digital filter. However, they
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Table 1
SNR improvement [dB], our choice in bold typeface

Order II III IV V

Butt. 5.50 5.76 5.88 5.95

Bess. 4.22 3.52 3.05 2.71

Cheb. 2.88 4.29 4.95 5.37

Table 2
Peak reproducibility [% error], our choice in bold typeface

Order II III IV V

Butt. 7.72 8.34 10.45 11.40

Bess. 5.89 7.19 7.93 8.38

Cheb. 7.45 9.60 12.66 12.58
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Fig. 7. Digital Butterworth III implemented with direct form II.
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Fig. 8. MMSE noise canceller using a LMS filter.
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do not depend on the characteristics of the specific considered
signal. In this section, we introduce an algorithm whose
parameters are dynamically calculated and adapted to the
input signal in real time, the LMS algorithm (see Ref. [7] for a
complete development).

We are interested in the Minimum Mean Square Error (MMSE)
noise canceller implementation of this filter and in its Finite
Impulse Response (FIR) form. If a process d(n) is to be estimated
from an observed process x(n) corrupted by the noise v(n)

xðnÞ ¼ dðnÞ þ vðnÞ

and if we do not have any kind of information about d(n) or v(n), it
is not possible to separate the signal from the noise. However,
given a reference signal, this problem can be solved [7]. In the
nuclear detector applications, here considered, we cannot have a
reference signal and so we can adopt a different approach. We
simply delay the process x(n) of n0 samples (Fig. 8), where x(n) is
the measurement, d(n) is the desired component, d̂(n) is an
estimate of d(n), v(n) is the noise component uncorrelated from
d(n), v̂(n) is an estimate of v(n).

In our model we can assume that d(n) is a narrowband process
(Fig. 6) and that v(n) is a broadband process with

EfvðnÞ � vðn� kÞg ¼ 0; jkjXk0

where E{ � } is the statistical expectation and, if v(n) is white, then
k0 ¼ 1. So shifting the reference of at least k0 samples, the noise
component of the signal x(n�n0) is uncorrelated with the noise of
the measured signal x(n).

Therefore, if k0pn0pk1, the delayed process x(n�n0) will be
uncorrelated with the noise v(n), but correlated with d(n) (from
the condition n0pk1). Thus, the samples of x(n�n0) may be used
as a reference signal to estimate d(n) as illustrated in Fig. 8.

The problem we want to solve is how to obtain an estimate of
the current sample d(n) of the desired signal from a set of
M ¼ k1�k0+1 previous samples of the measured signal:

x̄Mðn� n0Þ ¼ ½xðn� n0Þ; xðn� n0 � 1Þ; . . . ; xðn� n0 �M þ 1Þ�T.

To do this, the observation vector x̄M(n�n0) must be filtered by a
proper ‘‘linear predictor’’, designed as a FIR filter with coefficients

w̄M ¼ ½w0;w1; . . . ;wM�1�
T

so that the filtered signal, d̂(n), is written as

d̂ðnÞ ¼ w̄H
M � x̄Mðn� n0Þ ¼

XM�1

k¼0

wn
k � xðn� n0 � kÞ

where w̄M
H is the Hermitian transpose of w̄M.

The optimum design of the filter coefficients can be made
through the minimization of the Mean Square Estimation Error
(MSE) [12], defined as

EfjeðnÞj2g



ARTICLE IN PRESS

0 0.5 1 1.5 2
x 10-6

-0.2

0

0.2

0.4

0.6

0.8

1

time [s]

am
pl

itu
de

Butterworth Filtered Signal  vs Desired 

 

desired
Butterw III

Fig. 10. Butterworth III order filtered signal vs. desired signal.

Table 3
LMS performances vs. m, best result in bold typeface

LMS step size m % error SNR improvement (dB)

0.05 36.88 5.51
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where e(n) ¼ d(n)�d̂(n) is the estimator error. It is a known result
of the MMSE filter design theory [7,9] that the optimum set of
filter coefficients for the linear prediction problem, stated as
before, is given by

R̄xx � w̄M ¼ r̄xd

where R̄xx ¼ E{x̄M(n�n0) � x̄M
H(n�n0)} is the M�M autocorrelation

matrix of the input process, x̄M
H is the Hermitian transpose of x̄M,

and r̄xd ¼ E{x̄M(n�n0) � x(n)} is the cross-correlation vector be-
tween the past observation x̄M(n�n0) and the current one x(n),
which contains the desired component d(n).

However, in the case of the considered experiments, the non-
stationarity of the observed process suggests to choose an
iterative, adaptive implementation of the above formulation,
known as LMS adaptive filter [7,9].

Using a one-point sample mean (for a more complete
discussion of the LMS algorithm the reader is referred to Ref.
[9]), the update equation assumes a simple form known as the
LMS Algorithm:

w̄Mðnþ 1Þ ¼ w̄MðnÞ þ m � eðnÞ � x̄nMðn� n0Þ (1)

where w̄M(n+1) is a new vector of filter coefficients at time n+1,
w̄M(n) is the filter coefficients vector at time n, e(n) is the error at
time n, x̄nMðn� n0Þ is the complex conjugate of the measurement at
time n�n0, n0 is the introduced delay, and m is the step size. It is a
positive number that affects the rate at which the weight vector
w̄M(n) moves down towards a stable solution.

Since this work is preliminary for the implementation of these
filtering algorithms on FPGAs, we need to take into account their
computational complexity. Let us consider the LMS complexity in
terms of additions and multiplications: Eq. (1) requires one
addition to compute the error e(n) and one multiplication to form
the product me(n), M multiplications, and M additions to update
the filter coefficients. Finally, M multiplications and M�1 addi-
tions are necessary to calculate the output, y(n) ¼ d̂(n), of the
adaptive filter. Thus, a total of 2M+1 multiplications and 2M

additions per output point are required.
The choice of the step size m corresponds to a tradeoff among:
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the time dependence of the squared error function (e2(n)). The
e(n) function is a positive or negative quantity involved in
Eq. (1) responsible for real time correction of the filter
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coefficients. If the algorithm converges to a stable set of
coefficients the correction, as a function of time, and its
squared estimate, should have a decreasing behaviour.

�
 the coefficient settlement during the measurement or the

simulation in order to understand if the algorithm has reached
a stable solution.
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5. Behaviour comparison and discussion

In Fig. 9 the desired digital signal is plotted superimposed on
the noisy digital signal.

The filtered signal obtained with an IIR Standard Butterworth
LP III order digital filter is presented in Fig. 10.

The input SNR is 8.41 dB. Using the Butterworth filter this
quantity arises to 14.17 dB with an improvement of 5.76 dB.
However, this filter introduces a peak amplitude distortion that is
worse for the first of the two processed pulses. In Fig. 10, the
amplitude of the first peak for the Butterworth filtered signal is
greater than the desired signal, being the distortion of 8.34%.

The order n of the FIR LMS was fixed to n ¼ 4 to introduce a
medium level of complexity with a reasonable elaboration time.
Using a LMS filter the performances are a function of the step size
m, as shown in Table 3. The percentage error is calculated as for
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the Butterworth filter for the first peak, that is for the highest
distortion condition.

In Fig. 11, the LMS filtered signal with m ¼ 0.18 is presented; the
output SNR is 14.98 dB, so the enhancement is of 6.57 dB, and the
peak reproducibility is also enhanced (lower percentage error).
Indeed, in Fig. 11 the amplitude of the first peak for the LMS filter
nearly matches the desired signal, the distortion being only of 0.06%.

The choice of the step size corresponds to a tradeoff among the
evaluated SNR enhancement, squared-error function decreasing
behaviour (Fig. 12), and coefficients settlement (Fig. 13) intro-
duced in the previous section.
6. Conclusion and outlook

Two classes of digital filters, the Butterworth one and the
adaptive LMS filter, have been compared by simulation. This study
was originated by the need to extract the signal features for
further on-line processing. The field of application is a new data
acquisition system for nuclear physics experiments where the
selection of the accepted events is no more performed by
hardware triggers but is based on a sophisticated software system
working on pre-processed data.

The requirements on peak reproducibility and SNR are
matched better by the LMS filter, thanks to the capability to
adapt the parameters to the typically non-stationary environment
of the nuclear physics detectors. The simulation showed that a fast
settlement of the coefficients can be reached with an algorithm of
medium-level complexity, with an elaboration time scaling
linearly with the filter order.

The LMS filter system considered here will be implemented on
a FPGA for test on data streams coming from multi-channel
systems operated at high rates (of the order of 10 MHz) with a
programmable pulse generator.

Data sets of real signals will be used as well to study the time
and energy resolution achievable in comparison with the algo-
rithms currently used for the signal features extraction.
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