

S*ProCom2

Adding a custom IP to
PowerPC using Xilinx
XPS
A very short tutorial

Deian Stefan
1/8/2009

Table of Contents
The Custom Core ... 3

Downloading the board files and creating the XPS project .. 4

Creating the IP... 8

Adding custom IP to default user_logic generated code .. 13

Including the Customized IP.. 17

Modifying the software .. 19

The Custom Core

The custom core is very simple. It takes three inputs a,b,c and returns an output d=a*b+c with a 4 cycle
latency. The verilog code is shown below:

The multiplier mult was generated using CORE gen, with 4 pipeline stages and a synchronous reset. The
d4 and d4_bit are 4cycle delay clocks for 32bit inputs and 1bit input, respectively.

Downloading the board files and creating the XPS project

We’re using the Virtex-2 Pro XC2VP30 on the XUPV2P Digilent board.

1. Download the XUP-V2Pro Pack from Digilent
(http://www.digilentinc.com/Data/Products/XUPV2P/EDK-XUP-V2ProPack.zip)

2. Extract it in C:\xupv2p – you should see a folder named lib
3. Open Xilinx XPS and create a new project with the Base System Builder wizard

4. Create a folder in C:\ called myproj and then select that as your project directory. Also select the
previous lib directory in the project peripheral repository

5. Create a new design
6. Select the target development board

http://www.digilentinc.com/Data/Products/XUPV2P/EDK-XUP-V2ProPack.zip�

7. Select the PowerPC

8. Set the PPC specs:

9. Select the RS232_Uart_1, leaving the baudrate/bit/parity default and unselect the other
components

10. Unselect the DIP switches and pushbuttons

11. Increase the block ram interface controller size to 64k

12. Leave the Software Setup to default

13. Leave the memory and peripheral test applications to default, they can be changed later to
generate a new linker script

14. Here is the summary of the system to be created:

15. Generate and finish!

Creating the IP

1. In XPS click create a new peripheral (Hardware->Create or Import Peripheral)
2. Create template for new peripheral

3. Add it to the XPS project

4. Name it madd

5. Choose the PLB v4.6 bus

6. Select Software reset, registers and interrupt control

7. Disable the Device Interrupt Source controller and choose 1 logic interrupt

8. Change the number of software accessible registers to 4

9. Leave the IP interconnect settings to the default

10. For this tutorial we’ll leave the BFM simulation unselected
11. Select the peripheral implementation support – It’s helpful to have some initial code written

which you can just modify

12. Finish!

Adding custom IP to default user_logic generated code

The previous wizard created some code for your core – the wrappers for the PLB bus and a simple core
which allows you to read and write to the 4 registers.

Here is the input/output portmap:

The 4 registers we requested and some control regs/wires:

The bus to IP (Bus2IP_Data) limits you to one write per cycle so we can access only one of the registers
for writing. The Bus2IP_BE is used for make sure that the bytes in the word are good:

Writing from the IP (IP2Bus_Data):

Finally the read/write acknowledgements and selects are quite straight forward defined as:

See the attached original_user_logic.v file for the full file.

Now, let’s actually modify the file!

For this core we want 3 write registers and a read register (the result). So let’s choose slv_reg[0-2] as the
input and slv_reg3 as the output, so lets prevent direct writing to slv_reg3 by modifying write_ack bit:

and disable direct writing to it:

and finally, change it from a reg to a wire, since we’ll connect it to our core as the output d.

A further step would be to set IP2Bus_Error if an attempt to writing is made, but since we’re also writing
the device drivers we don’t have to.

The custom core takes in a flag en_in and delays it by 4 cycles to output en_out, so as to avoid needing
to halt the multiplier and under-utilize the pipelining. The en_in is simply a flag that says “the inputs are
valid” and 4-cycles later the output of the core also has the flag en_out which says “this output is valid.”
So to integrate this in user_logic we want to keep track of which of the three registers were written to
already and we can do this by creating a 4-bit flag, slv_regs_wr which is added as before the case(
slv_reg_write_sel):

When all 3 registers were written we can consider this as valid inputs so let’s create a flag slv_regs_ok
for the en_in and one for the valid output, which we’ll name slv_reg3_ok) and add our module:

Finally, let’s add the interrupt event which will be high whenever the output is valid, so if our module is
modified to take 100 cycles instead of 4 we don’t have to write drivers which will constantly poll the
slv_reg3 register for changes:

See the attached user_logic.v file for the full file.

We now have to copy our mu_dd project properly.

1. Copy d4,v,d4_bit.v,mu_add.v to C:\myproj\pcores\madd_v1_00_a\hdl\verilog
2. Copy the coregent multiplier mult files mult.* to C:\myproj\pcores\madd_v1_00_a\hdl\vhdl
3. Edit the madd PAO file (C:\myproj\pcores\madd_v1_00_a\data\ madd_v2_1_0.pao) to include

these files. Append the following lines:
lib madd_v1_00_a mu_add verilog
lib madd_v1_00_a d4 verilog
lib madd_v1_00_a d4_bit verilog
lib madd_v1_00_a mult vhdl

4. Copy the multiplier netlist mult.ngc to C:\myproj\implementation

Including the Customized IP

Now let’s add our modified madd project to the XPS project.

1. In the IP Catalog right-click MADD and click on ‘Add IP’

2. In the ‘Bus Interfaces’ tab expand ‘madd_0’ and choose the SPLB connection to be plb0

3. In the ‘Addresses’ tab select ‘madd_0’ change the size to 32K and click Generate Addresses

4. In the ‘Ports’ tab expand ‘madd_0’ and for the ‘Net’ create a new connection and name it
‘madd_0_irq’

5. Expand ‘ppc405_0’ and find ‘EIC405EXTINPUTIRQ’ and choose ‘mad_0_irq’ instead of ‘No
Connection’

The core is now connected to the bus and the interrupt is connected to the PowerPC, let’s modify the
software now.

Modifying the software

1. Let’s first add the drivers created by the wizard. In the Applications tab click on ‘Add Software
Application Project’ and name it ‘madd_test’

2. Right click on ‘TestApp_memory’ and deselect it from begin initialized on the BRAMs

3. Select ‘madd_test’ to be initialized instead.
4. Right-click on it again and click go to generate the linker script. Modify the heap and stack

5. Now add the sources (madd.[ch],madd_selftest.c) from C:\myproj\drivers\madd_v1_00_a\src
6. Modify madd_selftest.c by commenting out the lines related to register 3:

7. Add a new source file named ‘madd_test.c’ to C:\myproj\madd_test.c:

8. Right-click on ‘madd_test’ and click on ‘Build Project’
9. Click on Hardware->Generate Netlist and then Hardware->Generate Bitstream
10. Open your favorite terminal client (Putty and connect to the COM port to which you connected

the dev board)
11. In XPS click on Device Configuration->Download Bitstream

a. If you get an error copy the mult.ncg again and retry – remember that mult was created
using COREGEN

The output should be as shown below:

12. Now let’s write our own test code, modifying the original self test
13. We are going to use interrupts to read slv_reg3 so we need to include some additional header

files:

14. Let’s modify main to setup the interrupts and register the interrupt handler:

15. In a real example we should use conditional sleep instead on a flag, but for this example we will
use a simple flag:

16. And create an interrupt handler which just sets the flag:

17. Finally let’s look at the test code:

The output should be as shown below:

That’s it!

	The Custom Core
	Downloading the board files and creating the XPS project
	Creating the IP
	Adding custom IP to default user_logic generated code
	Including the Customized IP
	Modifying the software

