Application Note: Embedded Processing

Creating an OPB IPIF-based IP and Using
2 XILINX" | "Dk

XAPP967 (Vll) February 26, 2007 Author: Mounir Maaref

Abstract

Included
Systems

Introduction

Adding custom logic to an embedded design targeting the Xilinx FPGA can be achieved using
different methods and techniques. This application note focuses on using the EDK OPB IPIF
Interface to achieve such integration.

This document contains guidelines for choosing the required OPB IPIF Services to use to
interface the user logic to the OPB without having to create all the provided IPIF Services.

Initially, the Create IPIF Wizard is used to generate a user core template, then the user logic
HDL is integrated to the template according to the core requirements. Finally, the IPIF Wizard
will be used to import the newly created core back into the EDK environment.

The IPIF Wizard generates a drivers template for the IP. The template is used to access the
Custom OPB Core from the System SW Application.

An example design targeting the Xilinx Reference Platform ML403 is provided to illustrate the
design flow, understand the hardware and software implementations, and to test the generated
system on the ML403 demonstration board.

Included with this application note is one reference system:

www.xilinx.com/bvdocs/appnotes/xapp967.zip

Adding custom logic to an embedded design can be done using different approaches.

Custom logic can communicate with the embedded system using the OCM bus in a
PowerPC™ based system. For MicroBlaze™ systems, the FSL interfaces are an excellent way
to make logic directly visible to the processor. Using the OPB/PLB GPIOs with an indexed
addressing (if required) can help in integrating user logic to an embedded design.

The second port, Port B, of the BRAM memories connected to the OCM, PLB, LMB, or OPB
bus can make a specific memory region common between the processor and the user logic,
thus providing a way of exchanging data between the processor and the FPGA logic.

Connecting the user logic directly to the OPB or PLB requires understanding the OPB or PLB
protocols and designing the required services that simplify the communication with the
embedded system.

To make such a method easy and to shorten the design life cycle of the OPB or PLB custom
peripherals, Xilinx provides the necessary OPB IPIF libraries and associated SW tools.

The focus of this document is on the OPB IPIF services. The document outlines the process for
choosing the required OPB IPIF services to interface the user logic to the OPB bus without
having to create all the provided IPIF services.

The first stage of creating such a peripheral is to use the IPIF wizard to generate a User Core
Template to which the required modifications are added to the user logic HDL according to the
core requirements. The IPIF wizard is used for a second time to import the newly customized
core (OPB IPIF services + User HDL) back into the EDK environment, and finally the software

© 2007 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. PowerPC is
a trademark of IBM Inc. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this
feature, application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you
may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any
warranties or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

XAPP967 (v1.1) February 26, 2007 www.xilinx.com 1

http://www.xilinx.com/bvdocs/desfiles/xapp941.zip
http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Hardware and Software Requirements

SXILINX®

Hardware and
Software
Requirements

Overview of the
OPB IPIF
Services

drivers template generated for the custom IP are customized for use with the new IP core
functionalities in the software application running on the embedded system.

Figure 1 illustrates the logical steps needed for such a design flow.

Deciding which IP
Services to Use

i

Using the XPS Create/Import
Peripheral Wizard to
Generate a Template

i

Using ISE to Integrate
Custom Logic into the
Template of the IP

/ /

Using XPS to Create/Import
Peripheral Wizard to Generate
the Custom OPB IP

Using XPS to Customize the
Template-generated Drivers
if Required

i

The New OPB Custom IP is
now Ready to be Used
in an XPS Project

X967_01_012207

Figure 1: Design Flow for an OPB IPIF-based Custom IP

The hardware and software requirements are:

EDK 8.2i with Service Pack 1 or Higher

ISE 8.2.03 or Higher

HyperTerminal or another terminal emulator
Xilinx ML403 demo board

Xilinx Parallel Cable 4 or USB Cable

Serial Cable

OPB IPIF (On-Chip Peripheral Bus Intellectual Property Interface) provides a standardized
connection to the OPB. The IPIF uses a back-end interface standard called the IPIC (IP

Interconnect) which helps to connect the user logic to the IPIF services. The IPIF provides
options which can be selected by the user, such as:

Address decoding

Interrupt management

Software accessible registers

IP reset via software-accessible registers

XAPP967 (v1.1) February 26, 2007

www.Xxilinx.com

http://www.xilinx.com

Block Diagram

SXILINX®

Block Diagram

e Module identification register

e Read and write FIFOs between the user logic and the OPB

e Simple DMA capability for the read and transmit sides

e Scatter-Gather DMA (SG DMA) capability for the read and transmit sides

The IPIF services are used in most Xilinx processor IP device implementations and are

available for customer use when creating custom OPB peripherals to integrate into an XPS
design.

Having a common interface, the OPB IPIF reduces the development effort for custom OPB
cores, and promotes higher quality because of less variability.

Figure 2 provides a functional representation of the OPB IPIF.

OPB IPIF
A Device Interrupt (P27) oot , User
jmmmmm——- : Interrupt_} IPIC De'; .
» 1 S/W Reset! ! [=R 9
8IPBk o fmmmemen TP ™1 lisc! IP Interrupt
1 | [F—
ock|(P1) . ' MR i ! Reset 1 T ! Events (P32)
= ! ! Sevi
Reset (P2) e EE L v Iesvg:ei Clk and System (P29-31) _
tooozzzzd IP Status Reply (P45-50)
Byt %) Rd/Wr Qualifiers (P34-39)
yie a >
Steering lEL 2 CS Address Decodes (P40) o
- g CE Address Decodes (P41-43)|
- Write Data Bus (P33) o
»-| Slave Attachment gl
OPW Request | . . __ - Read Data Bus (P44)
and|Qualifiers | 1 N [
B Q : nggztr . ' i ' Read Data (P78) o
-} 1 -
Slale Reply | 1.2 ____1 ! Wr FIFO | Read Status (P83-86) .
i B i L Read Controls (P79-82)
s o X L™
& 58 52 . ! Write Data (P69
I g2 rite Data
z fg oo e s
o S g V RAFIFO ! Write Status (P74-77) -
o o =
3 3 i b Write Controls (P70-73)
T i D : =
1 1
' E :‘ IP Master Request (P55-61)
]
OPB|Request] Master | Master ; -
and Qualifiers ! Attachment! Request | Transfer ;------ Master Reply (P62-68)
! 1 Arbiter 1| Request ! o
L -1 i
OPB Master 1 ' ! Request | DMA , Scatter Gather
Reqly i : | Status 1 Scatter! Support (P51-54)
! ! ¥ 1 Gather i >
Hommmmm- Smmmmm— F Aux DMA
Support (P87-88)

Legend:

! | =User Optional Services P = Port
- X967_02_012407

Figure 2: OPB IPIF Block Diagram

Most of the IPIF Services are optional and may be included or excluded according to the IP
requirement.

XAPP967 (v1.1) February 26, 2007 www.xilinx.com 3

http://www.xilinx.com

Block Diagram

SXILINX®

OPB IPIF Services Software Interface Registers

Most of the IPIF Services are accessible by the software application through a predefined set
of registers.

The IPIF registers are grouped by function, and each set of registers belonging to the same
group are implemented in the IP if the corresponding function is selected during the build time
of the IP core template.

OPB IPIF Services Memory Mapping

Every IPIF Service is mapped to the system memory at a predefined offset, and every register
in the function is again mapped to the system memory at a predefined register offset.

Device Interrupt Source Controller Service: The IPIF Service Offset = 0x0.
IP Interrupt Source Controller Service: The IPIF service offset = 0x0.

Every register functionality, access mode, and offset is defined in the DS414 OPB IPIF data
sheet.

Reset Register and MIR Service: The IPIF service offset = 0x0.
Read FIFO Service: The IPIF service offset = C_RDFIFO_REG_BASEADDR_OFFSET.
Write FIFO Service: The IPIF service offset = C_WRFIFO_REG_BASEADDR_OFFSET.

DMA/Scatter Gather Service: The IPIF Service Offset =
C_DMA REG_BASEADDR_OFFSET + chan_num*64.

chan_num = 0 for the transmit (or write) side.
chan_num = 1 for the receive (or read) side.

Every register functionality, access mode, and offset is defined in the DS414 OPB IPIF data
sheet.

Identifying the OPB IPIF Services to Use

In the early stages of integrating the user logic to an existing embedded system design,
highlight the considerations of how the final OPB custom IP should be made visible to the other
peripherals accessing the same OPB. When needed, define the visibility of the IP to the
software running on the system via user accessible registers. In addition, indicate if the custom
IP generates interrupts and if the IP consumes or produces data at a rate faster or slower than
the embedded system speed. It is also required to know if the custom peripheral will need DMA
access and burst to transfer and read data form the embedded system memory space.

The objective of this design is to integrate a user logic side that is operating at a different speed
than the processor system, and which will therefore require time domain interface over
synchronous FIFOs for read and write operations. The IP receives data from the processor
system, processes it, and when done processing, will interrupt the processor to provide the
results. This embedded design is based on a PowerPC processor with an OPB UART Lite core

XAPP967 (v1.1) February 26, 2007 www.xilinx.com 4

http://www.xilinx.com

Block Diagram

SXILINX®

to use as a console for user verification. Figure 3 provides a high level description of the
embedded design.

PLB OPB
JTAG PLB_BRAM |a—rtp OPB_UART |
Ctrl -
A
' OPB_BRAM1 |t~
TAP DPLB |g~»
PowerPC™ _ OPB_BRAM |—»
IPLB [-
1
v R OPB Interrupt
Controller
System 1
Reset !
------- I-------l
___________________) ! OPBIPIF
. : : Custom e~
1 To be created, then i Peripheral
1added to the system: S a
- H
. PLB20OPB
7T Bridge |~ 7 7|

X967_03_012407

Figure 3: Embedded System Diagram

To simplify the example, a simple user logic functionality is required. The custom logic will act
as a slave peripheral, a destination of data packets generated by the processor. The peripheral
loops back the received data within the user logic side. The data is then returned to the
processor over the OPB. For the IP to processor synchronization, it is important to avoid data
overruns. Figure 4 shows the data flow that the IP should keep up with in the system.

OPB BRAM-1 Buffer MY OPB IPIF IP

MTU Data: 4096 B DMA » \Write FIFO |-
OPB BRAM-2 Buffer Read FIFO [«

MTU Data: 4096 B DMA

Figure 4. Data Flow Diagram

For exchanging data with to the processor, the hardware structure applicable is the use of
FIFOs.

For the IP to processor synchronization using the interrupt will be best implemented, and
because the data is packet type, using DMA for packet transfers from the embedded system
memory to the OPB IPIF IP could also be used to offload data packet exchange from the
processor list of tasks at run time.

XAPP967 (v1.1) February 26, 2007

www.Xxilinx.com 5

http://www.xilinx.com

Block Diagram

S XILINX®

Generating the Required OPB IPIF Core Template

This section describes how to use the Create/Import Peripheral Wizard of XPS to create the
required IPIF template.

1. Unzip the reference design to your local hard drive, then open the project using XPS.
2. Inthe XPS window shown in Figure 5, select Hardware — Create or Import Peripheral....

nx Platform Studio - no project opened

File Edit Wiew Project Software Device Configuration Debug Simulation Window Help
{5 Bt Generate Netlst RIERR ® i

Gererate Bitstream

Fraject | Applications

Platform Configure Coprocessar,

25 Clean hetlist

@ Clean Bits

B Clean Hardware

X967_05_012207

Figure 5: XPS IPIF Wizard Launch

3. In the Wizard Welcome Window click Next.

4. In the Create/Import User Peripheral Wizard window shown in Figure 6, select Create
Templates, and in Select Flow, select Create template for a new peripheral.

Create and Import Peripheral Wizard

Createflmpornt User Peripheral
Indicate if you want ta create a new peripheral or import an existing peripheral

Thiz toal will help you create templates for a new EDE compliant peripheral, or help pou import an
exizting peripheral into an *PS project or EDKE reposzitony. The interface files and directary
structures required by EDE will be generated.

Select Flow
> [(:' Create templates for a new peripheral]
" Import existing peripheral

Implement/Verify : — Fllews Biesentzian

This tool will create HDL templates that hawve the EDE
compliant port/pararmeter interface. You will need to implement

the body of the peripheral.
Import to XPS
Fare Info | < Back I Mext » I Finizh I Cancel

X967_06_012207

Figure 6: Create or Import Peripheral Menu

XAPP967 (v1.1) February 26, 2007 www.xilinx.com 6

http://www.xilinx.com

Block Diagram

SXILINX®

XAPP967 (v1.1) February 26, 2007

5.

In the Repository or Project window shown in Figure 7, select To an XPS project. In the

Project field, select $\\xapp967\.Inthe Peripheral will be placed under: field,

select C:\xapp967\pcores, then click Next.

~ Create Peripheral - Repository or Project

Repository or Project

Indicate where pou want ta stare the new peripheral,

4 new peripheral can be stored in an EDK repasitory, or in an<PS project. ‘when stared in an EDK repositony, the peripheral can be
aceessed by multiple 2PS projects

€ Ta an EDK. user repasitory [4ny directory autside of your EDK installation path)

Repositon: | Browse.
& Toan=FS pioject]
[Fmiect [CrwapplETs |][Browmse

Peripheral will be placed under
Ci\wappd67hpoores

[<Bak J[_Hew>] [Canel |

X967_07_012207

Figure 7: IPIF Template Repository Selection
6.

In the Name and Version window, provide the name of the peripheral. In the Name field,

enter opb_ipif_ template. Make the selections in the revision fields as shown in

Figure 8, then click Next.

~ Create Peripheral - Name and Yersion

Name and ¥ersion

Indicate the name and version of your peripheral

Enter the name of your peripheral. This name wil be used as the top HDL design entty

[Name |opb_ipif_ternplate |]

Wergion: 1.00.5

Maijor revision: Miror revision: Hardware/Softwars compatibiliy revision:

=) ()| =)

Logical library name: opb_ipil_template_v1_00_a

Al HDL files [sither created by you or generated by this (ool used to implement this peripheral must be compiled into the logical lisra

named above. Any other logical libraries referred to in vour HOL are assumed to bie available in the XPS proiect where this peripheral is
used, or i EDK 1epasitories indicated in the }PS project settings.

[<Back |[mMems | [Cancal

X967_08_102207

Figure 8: Create Template Name and Version

www.Xxilinx.com

http://www.xilinx.com

Block Diagram

SXILINX®

7.

8.

heral - Bus Interface

Bus Interface

Indicate the bus interface supported by your peripheral.

To which bug will this peripheral be attached?

@ :@._r_'.]-ch\p Peripheral Bus [OPE I

() Processor Local Bus [PLB)
(7 Fast Gimplex Link [FSL)

ATTENTION

Riefer ta the following documents to get a better understanding of how user perpherals connect to the CoreConnect[T M) buses
through the IPIF interconnection standards.

CoreConnect Specification

OFE IPIF Specification for slave only peripherals
OFE IPIF Specification for master/slave peripherals
PLE IPIF Specification for slave only peripherals
ELE IFIF Specification for master/slave periphersls
ESL IFIF Specification for master/slave peripherals

MOTE: Other bus interfaces are not supparted by the wizard in this release.

l < Back] [MNext >] l Cancel

X967_09_012207

Figure 9: Bus Interface Selection

IPIF Services

IPIF Services
Indicate the IFIF services required by yaur peripheral @

Yaur peripheral will be connected ta the OPE bus through the OPB P interface (IPIF) module. Besides standard functions like address

decoding, this module also offers other commanly used services. Using these services may significantly simplify the implementation of pour
peripheral
Basic slave service and support Adwance slave service and support

Commaon and typically required by Typically required by peripherals that
most peripherals for operations lke need data bufering or multiple
logic control, status report, and stc, memoary/address spaces access.

S reset and MIR Buret transaction support
User lagic intsrupt suppoll] [FIFO]
[] User Ingic 5™ register support [] User lngic address rangs suppart

siBen 850

sng |eseydusg diyo-ug

Master service and suppart

Typically required by complex peripherals like Ethemet and PCI far command
data transfers between regions.

() Packet mode Scatter Gather

[[] User logic master support

[<Back |[Net> | [Cancel

X967_10_012207

Figure 10: OPB IPIF Services Selection Menu

In the Bus Interface window shown in Figure 9, choose On-chip Peripheral Bus (OPB) as
the bus to which the IP is attached, then click Next.

In the IPIF Services window, select the required services as shown in Figure 10.

XAPP967 (v1.1) February 26, 2007

www.Xxilinx.com

http://www.xilinx.com

Block Diagram SIX"JNX®

9. Inthe FIFO Service window, configure the size of the read and write FIFOs by making the
selections shown in Figure 11, then click Next.

5 Create Peripheral - FIFD Service

FIFD Service
Configure the read/write FIFD in the [PIF. @

The IPIF can be set up such that it containg a FIFO, Your peripheral can uze this FIFO to interact with the processor.
Include Read FIFO Include /rite FIFD
Drata width [bit) of Read FIFD: LEZ v Draba width [bit] of Write FIFO: | 32 7\';

Mumber of Read FIFO enfries: | 1024 %

sng g1d 10 840

[< Back] [Mext >] I Cancel

967_11_012207

Figure 11: FIFO Services Configuration

10. In the Interrupt Services window, configure the IP interrupt services by making the
selections as shown in Figure 12, then click Next.

« Create Peripheral - Interrupt Service

Intenupt Service

Corfigure interrupt handing, '@

The intermupt handling service in the IPIF provides a mechanism for generating one intermupt signal from multiple interrupt signals generated
in the user-logic and by the other services available in the |PIF.

{Use Device ISC fintenupt source controller];
Use Device IS Priority Encoder service)

Hurnber of interupts generated by user-lagic: ([1 ~|

Intermupt capturs mods

Level Pass Thiough [non-inverted] v

The input interupt from the user logic has no additionsl capture processing applisd 1o it
Itis immediately sent o the |P ISC Inkerrupt Enable gating logic

[<Back J[_New> | [Concel

DS967_12_012207

Figure 12: Interrupt Service Configuration

XAPP967 (v1.1) February 26, 2007 www.xilinx.com

http://www.xilinx.com

Block Diagram

SXILINX®

11. In the IP Interconnect (IPIC) window, customize the IPIC by making the selections as
shown in Figure 13, then click Next. This is the default setup for this IP.

Create Peripheral - Step 7 7|
IP Interconnect (IPIC) &
Select the interface between the logic to be implemented in your peripheral and \
the IPIF.

“'our peripheral iz connected to the bus through a suitable IPIF module. Y'our peripheral
interfaces to the IPIF through a zet of signals called the IP interconnect [IFIC] interface. Some
of the ports are alwayps prezent. Y'ou can chooze to include the others bazed on the
functionality required by vour peripheral.

Maote: all IPIC ports are active high.
OPB or PLB bus | -llfZfus Lk

Fort Description

uz2|P_Clk
usZ?IP_Reset B
IPIF [1Bus2IFP_Freeze
[1Eus2IP_addr

[wlBu=2IF_Data

[w]Bus2IP_Burst

v

More Infa < Back I Mext > I Cancel

DS967_13_012207

Figure 13: IPIC Setup

12. In the (Optional) Peripheral Simulation Support window shown in Figure 14, make no
selections, instead click Next.

Note: Do not select the BFM Simulation Platform for ModelSim; it is outside the scope of this document

eate Peripheral ep

[(OPTIONAL) Peripheral Simulation Support

Generate optional files for simulation using Bus Functional Models [EFM).

The EDK provides a BFM simulation platform to help pou simulate vour peripheral. Indicate if vou

waank this tool to generate the appropriate HOL and Bus Functional Language [BFL] stimulus file
for the target bus.

I Generate BFM simulation platform far b odelSim
MOTE: This feature requires that you hawve
accepted the azzociated IBM licensze
agreement and installed the BEFk toolkit,

The link below shows how:

EFM Toolkit Installation [nstructions

tore Info < Back I Mest > I Finist J Cancel I

967_14_012207

Figure 14: BFM Simulation Support

XAPP967 (v1.1) February 26, 2007 www.xilinx.com 10

http://www.xilinx.com

Customizing the User Logic Side of the Template in ISE 2:X||_|NX®

Customizing
the User Logic
Side of the
Template in ISE

13. In the (Optional) Peripheral Implementation Support window, make the selections as
shown in Figure 15 to control how optional files for hardware and software implementation
are generated. Select Generate ISE and XST Project Files to help during the
implementation of the Peripheral using the ISE Environment to set up the required
synthesis libraries in the ISE Project. Select Generate template driver files to help you
implement software interface for help in customizing the IP software interface later in the
software application. Click Next.

Create Peripheral - S5tep 9 E|
(OPTIONAL) Peripheral Implementation Support A
Generate optional files for hardware/software implementation \

Upon completion, this tool will create synthesizable HOL files that implement the IPIF services
you requested. A stub ‘user_logic' module will be created. v'ou will need to complete the
implementation of this module using standard HOL design flows. The tool will alzo generate EDK
interface files [mpd/pac] for the synthesizable templates. so that you can hook wp the generated
perpheral ta a proceszar system

MOTE: Should the peripheral interface [ports/parameters)

Per"ﬂ')eral M—IDL’ or file list change, you will need to regenerate the EDK

interface files using the impart functionality of this toal.

IPIF (VHDL}) [Generate stub 'uzer_logic’ template in Werilog
instead of WHDL.
r_ v Generate ISE and =5T project files to help you
User Lngic implement the peripheral using #5T Flov.
(VHDL} ¥ Generate template driver files to help you implement
—‘ software interface.
Mare Info < Back I Mext > I | Cancel |

DS967_15_012207

Figure 15: ISE Project Generation for the IP and Drivers Template

14. As seen in the Finish Window, the required OPB IPIF Template is generated under the
pcores directory of the XPS Project.

Under the Template IP name folder (xapp967\pcores\opb_ipif_template_vl_00_a\),
the wizard generates the following directories:

e \dev\ folder where the ISE Project is located for the IP editing.
e \data\ folder which contains the IP HW Platgen API Files (MPD, PAO).
e \hdl\ folder which contains the IP Template HDL files.

Under the Template IP name folder,
(xapp967\drivers\opb_ipif_template_v1_00_a\), the wizard generates the drivers
directory for the IP Template:

e \src\ folder where the drivers Source code files (* .h, *.c, makefile) are located.
e \data\ folder where the IP SW libgen API Files (mdd, tcl) are located.

The generated OPB IPIF core template includes a user logic side where the user logic is
connected to the IPIF through the IPIC set of selected signals. At this stage, the user logic
required functionalities are added to the user logic generated HDL file.

The ISE Project generated for customizing the Template is found under the directory
\xapp967\pcores\opb_ipif template_vl 00_a\devl\projnav\.

The opb_ipif_ template.ise project can be opened using ISE.

XAPP967 (v1.1) February 26, 2007 www.xilinx.com 11

http://www.xilinx.com

Customizing the User Logic Side of the Template in ISE 2:X||_|NX®

Customizing User 10s:

This step describes how to add custom user 10s if needed by custom OPB peripheral. Input
and output ports may be added as required.

In the user_logic.vhd file under the entity declaration, locate the following lines.

-- ADD USER PORTS BELOW THIS LINE --------=-=---——--
--USER ports added here
-- ADD USER PORTS ABOVE THIS LINE -------=--mnmmnme-

The port FIFOs_Status_Flag has been added as indicated below:

FIFOs_Status_Flag > out std_logic;

In the signal declaration, the following signals have been added:
signal rdfifo_flag : std_logic;
signal wrfifo_flag : std_logic;

At the end of the architecture declaration, the following has been added:

rdfifo_flag <=RFIFO2IP_Full;
wrfifo_flag <=WFIFO2IP_Empty;
FIFOs_Status_Flag <= rdfifo_flag or wrfifo_flag;

At this stage, a user defined I/O to the user logic has been added. Propagate this addition to the
custom OPB IP top level where the user_logic is instantiated.

Save and check the syntax of the user_logic.vhd module.
Open the file opb_ipif_template.vhd.
In the entity port declaration, locate the following:

-- ADD USER PORTS BELOW THIS LINE -------=----=-----
--USER ports added here
-- ADD USER PORTS ABOVE THIS LINE -------smmmmmmmee-

Add the following port as indicated above:
User_FIFOs_Status_Flag :out std_logic;

Locate the following:

-- Instantiate the User Logic

In the port map section:

-- MAP USER PORTS BELOW THIS LINE ------------------
--USER ports mapped here
-- MAP USER PORTS ABOVE THIS LINE ------------------

Map the user port as follows:
FIFOs_Status_Flag => User_FIFOs_Status_Flag,

Save and check the syntax of the opb_ipif_template.vhd file.

XAPP967 (v1.1) February 26, 2007 www.xilinx.com 12

http://www.xilinx.com

Customizing User Logic Interrupts XX"JNX@

Customizing
User Logic
Interrupts

Importing the
Custom IP back
into EDK

In the generated template of the user_1logic.vhd, example code which generates user logic
interrupts is provided by the wizard. The code snippet infers a counter and generates the
interrupts whenever the counter rollover (the counter will roll over ~10 sec @ 100 Mhz).

The functionality of the user interrupts can be modified by editing this process. The process
example will be commented out.

The desired functionality in this example is that the user IP generates an interrupt whenever the
read FIFO of the IPIF service is full.

o rdfifo_flag <= RFIFO2IP_Full;
e interrupt <= rdfifo_flag;
e |P2Bus_IntrEvent <= interrupt;

Save and check the syntax of the user_logic.vhd file.

Custom IP Naming and Version:

For this design, the IP name given to the IP template will be retained. The version numbering
will be changed by changing the middle number. The MPD File will be modified automatically
by using the IPIF wizard import capability in the next section.

This section outlines how to import the custom OPB IP peripheral back into the EDK
environment, after having generated the OPB IPIF Template opb_ipif _template and having
customized the user logic side functionalities.

1. From XPS, select Hardware — Create/lmport Peripheral ... as shown in Figure 16.

& Xilinx Platform 5tudio - no project opened
File Edit View Project|BzEEEEEN |Software Device Configuration Debug Simulation Window Help

Al 't’.‘i‘ E 55‘1 @E}g Generate Metlist i @ pd @ B [53 *‘;.? i

Praject Information Area Generate Bitstream

| Project I-"—"PP“CE“WS %Y Create or Import Peripheral...

e
Platform B¥l Configure Coprocessor.,,
!

85 Clean Hetlist

@ Clean Bits

g Clean Hardware

X967_16_012407

Figure 16: XPS IPIF Wizard Launch

XAPP967 (v1.1) February 26, 2007 www.xilinx.com 13

http://www.xilinx.com

Importing the Custom IP back into EDK

SXILINX®

2. In the Welcome Window, click Next. In the Peripheral Flow window shown in Figure 17,
select Import to XPS and Import existing peripheral, then click next.

[< Back I [et »] I Cancel I

% Create and Import Peripheral Wizard - Peripheral Flow

Peripheral Flow
Indicate if you want lo create a new peripheral or import an existing peripheral. ',‘:\,'??

This tool will help you create templates for & new EDK compliant peripheral, or help you import an existing peripheral into an %P5 project o
EDK. repository. The interface files and directory structures required by EDK will be generated.

Select flov

() Create templates for 2 new penpheral

Flow description

This tool will help vou import & fully implemented peripheral into
an %P5 project or EDK repository. Such peripherals need ta
have ports and parameters that conform o the conventions
required by EDK.

DS967_17_120706

Figure 17: Selecting the Import Mode of the IPIF Wizard

3. Inthe Repository or Project window shown in Figure 18, select To an XPS project. In the
Project field, select $\\xapp967\.Inthe Peripheral will be placed under: field,
select C:\xapp967\pcores, then click Next.

« Import Peripheral - Repository or Project

Repository or Project
Indicate wherte you wank ta store the new peripheral ‘ﬁ?

& new peripheral can be stored in an EDK repasitany, or in an 3PS project. When stored in an EDK repository, the peripheral can be
accessed by multiple XPS prajects.

) Toan EDK user repositary [any directory outside of your EDK installation path)

Bepository: | || Browse..
& Toan %P5 project
[Ermect | v [Browse

Peripheral will be placed under
Ci\xappaEPipcares

[)) [

DS967_18_012207

Figure 18: XPS IPIF Wizard Import Directory

XAPP967 (v1.1) February 26, 2007

www.Xxilinx.com

14

http://www.xilinx.com

Importing the Custom IP back into EDK

SXILINX®

4,

< Import Peripheral - Name and Version

Mame and Version

Indicate the: name of your peripheral and if using the EDK peripheral version naming scheme.

Enter name of the top VHDL entity ar Verilag module of your peripheral.
[Namg iip_l_:r_lywl_lemulale |]

Use version 1.10.a

Maijar rewision: Minar revision: Hardweare/5 oftware compatibility revizion:

) 3]

Laogical lbramy name: opb_ipif_template «1_10_a

imported along with the peripheral. Since all design files are compiled in the same directory, using logical ibraries other than given
above may cause name space conflicts.

Al the files for this peripheral are compiled into the logical library named above. If the peripheral refiers to other logical libraries, they are
either azzumed to be available in the cunent praject or in the repositories accessible through the current praject settings, or will be

[|

Mext >] [LCancel

DS967_19_012207

Figure 19: Import IP Naming and Version

In the name and Version window, provide the name of the peripheral. In the Name field,

enter opb_ipif_ template. Make the selections in the revision fields as shown in
Figure 19, then click Next.

Note that the version of the IP has changed to reflect a change in the IP functionality from the
original template.

5.

Import Peripheral - Step 2

Source File Types

Indicate the types of files that make up your peripheral

Indicate the types offiles that make up wour peripheral

[|7 HOL Source Files (*whd, "v)]

[Metlist Files *.edn, *.edf. “ngo. “.ngc)

[Documentation Files (*.doc, *td. *pdf. *)

Mare Infa <Back Med > | |

Cancel

DS967_20_012207

Figure 20: IP Source Files Type Specification

In the Source Files Types window shown in Figure 20, select HDL Source Files (*vhd, *v),
then click Next.

XAPP967 (v1.1) February 26, 2007

www.Xxilinx.com

15

http://www.xilinx.com

Importing the Custom IP back into EDK XX"JNX@

In the HDL Source Files window, make the selections shown in Figure 21 to specify the IP
source files that use the pao file of the original OPB IPIF template that was generated by the
wizard. Browse to the initial location of this file under: \\ xapp967\pcores\
opb_ipif_template_vl_00_a\data\. Click Next.

& |mport Peripheral - HDL Source Files

HDL Source Files
Indicate how this tool should locate the HDL files that make up your peripheral ':\ﬁ?

HDL language used b implement your peripheral: | VHDL E

[[] Use data [“.mpd) collected during a previous invocation of this taal

[Browse

Hows to locate your HDL source files and dependent library files
(O Use an ¥5T praject file [*.pril

This toal will input the HOL file-set and the logical libraries they are compiled into from the appropriate (ines in the project file,

| || Browse
(® Use ewisting Feriphersl Analysis firdes fle [* o))
[%sf:aRpHE?\pcorEs\opb_l_p_\l____tsmplate_ﬂ_UU_a_d_a_la\opb_lpll_lemp\ate_vZJ____U_._paoI ||[Browse...
(3 Browse to pour HDL source and dependent libramy files (% vhd, * vhdl, v, “vh] in next step
T o

DS967_21_012207

Figure 21: IP Source Files Specification

In the Missing Source File - user logic.vhd window, the search paths used by the wizard will
be specified as shown in Figure 22. A path to the OPB Template is required. Select the Add
button, then type \\xapp967\pcores\ to add the search path to the IP template location.
Click Continue.

& Missing Source File - user_logic.vhd

The wizard failed to locate the zource file:
opb_ipif_template_»1_00_a uzer_logic. vhd
from the PALD file in the current zearchable EDE. repositaries.
Below are the current searchable EDK repositaries. Wou can add estra reference
pathz and re-parse the PAD file.

(Cihvedk_user_repositon®, Add..
CAEDE Nhw'

Remowve

Click Ok tore-parse the PAD file or click Continue to skip the mizzing zource file.

[Ok][Continue] [Cancel l

DS967_22_012207

Figure 22: Adding a Search Path to the IPIF Wizard

XAPP967 (v1.1) February 26, 2007 www.xilinx.com 16

http://www.xilinx.com

Importing the Custom IP back into EDK

SXILINX®

In the HDL Analysis Information window shown in Figure 23, the system indicates that the
wizard was not able to locate the user_logic.vhd and the opb_ipif_template.vhd

source files.

HDL Analysis Information

Indicate the HDL analyze order and the logical libraries your HDL files are compiled
into.

Usze thg
EUEIYE Xilinx Platform Studio

whdl

whll the list. are

whll ore

More Info < Back ‘ INext >]

ibraries and setthe HDL

vhdl oreja | Add Files...
whdl 'E The tool is unable to intuite the top design file, ore

L) Click ©K to take the last file in the analysis order | pore Add Library...
whdl as the top design file, or dick Cancel to modify |gore
whdl ore r—
whl ore : =
whl Okl Cancel ‘ ore
whdl Sl g1 o e = T | 18P = oa) g g n ot
whdl proc_common_wZ_00_a CyEDK/hwixilinxFrocessorlFLib/pocore igwe LT

whdl proc_common_v2_00_a C/EDK/hwixilinkProcessorPLib/pcore ™
< i > todif

Cancel ‘

DS967_23_012207

Figure 23: Adding Source Files Manually to the IP

6. Add the vhd files manually. Select the Add Files ... button, then in the Select ... HDL source
files window shown in Figure 24, specify the location of the source files.

Select one or more HDL source files

PIX]

=
=
o

amputer

f

(’ﬂ

Look in:Lk‘_") vhdl | o] o« =k B3~
_2 opb_ipif_template.vhd
: user_logic.vhd
by Recent
Documents
=
L
[reskiop
My Documents

Iy Netwark File harme: | - Open
Flaces] _J |_"""‘—]
Filez of type: |VHDL Source Files [* vhd * vhdl] _V_] Cancel

DS967_24_012407

Figure 24: Adding Source Files Manually to the IP From the pcores/hdl/vhdl Location

7. After the files have been added, a parsing error of the source code is displayed:

During the custom IP import process, the version of the custom IP has been changed from

v.1.00.a to v.1.10.a; these are appended to the custom IP name to form a logical library which
is referenced in the IP HDL Files. Open opb_ipif_template.vhd, and change:

From:

library opb_ipif_template_vl_00_a,

use opb_ipif_template_wv1l_00_a.all;

To:

XAPP967 (v1.1) February 26, 2007

www.Xxilinx.com

17

http://www.xilinx.com

Importing the Custom IP back into EDK SIX"JNX®

library opb_ipif_template_wvl_10_a;

use opb_ipif_template_vl_10_a.all;
Change
From:

USER_LOGIC_TI : entity opb_ipif_template_wl_ 00_a.user_logic
To:

USER_LOGIC_TI : entity opb_ipif_template_wl_10_a.user_logic

8. Inthe Bus Interface window, make the selections as shown in Figure 25. Because this is an
OPB slave core with a DMA master IP, specify the bus interfaces to be OPB Master and
Slave (MSOPB).

% Import Peripheral - Bus Interfaces

Bus Interfaces
|dentify the bus interfaces supported by your peripheral @

A bus interface is a group of related interface ports distinguished by & bus standard [OPB. PLE. DCR, LME or FSL]. Selzct the bus
interface(s] supported by your peripheral or indicate there is no bus interface applies.

Select bus interfacefs]

On-chip Peripheral Bus interface] Device Contol Register bus interface

[] DCR Slave (SDCR)

[1 Maser Intertace is optional

[[] OPE Slave (SOPE) Local Memary Bug interface
[] L+B Slave [SLMB]
Processor Local Bus interface

FLB tast d 51, tMSPLE
0 sstctanelrc ML) Fast Spmplex Link bus interface

M aster intertace is optional [FSL Master MFSL)
[] PLE Slave [SPLE) [] FSL Slave [5FSL)
e e] [

Figure 25: Selecting the OPB as a Bus Interface

In the next window, a confirmation of which bus interface is used and its characteristics
appears. Ignore the warning that the M_DBus is not used by this IP. Click Next.

XAPP967 (v1.1) February 26, 2007 www.xilinx.com 18

http://www.xilinx.com

Importing the Custom IP back into EDK

SXILINX®

9. Define the slave attachment parameters for the IP. In the SOPB : Parameters window,
make the selections as shown in Figure 26.

%% Import Peripheral - SOPB : Parameter.

S0PB : Parameter

Define the SOPE bus interface parameter(s) for this peripheral.

The SOPE bus interface iz defined by a predefined set of ports and parameters. If vour peripheral follows the standard
naming conventions, this toal has automatically done the selections far you. Othenvise check off the values.

Reqister Space

Farameter determine baze address: | C_BASEADDR Bl

Parameter determing high address: | C_HIGHADDR ~|

[Memory Space

Base Address Parameter| High Address Parameter | Cacheable Add

Remove

[[Mo] [e]

DS967_26_012307

Figure 26: Defining the SOPB Parameters

10. In the Identify Interrupt Signals window, make the selections shown in Figure 27.

Select IP2INTC_Irpt in the Select and configure interrupt(s) window. Under Interrupt
sensitivity of port: IP2INTC_Irpt, select High level sensitive.

~ Import Peripheral - Identify Interrupt Signals

Identify Interrupt Signals
|dentify the interrupt signals on your peripheral @

Indicate the attibutes of the interrupt signals by checking the interrupt port name on the left and then clicking on the radio buttons to the:
right. EDE, uges this information to automatically connect the interupt ports of your peripheral.

Select and configuie interupt(s]
O User FIFOs Status Fla Intermupt sensitivity of port: IF2INTC_[rpt

() Ealing edae sensitive () Law level sensitive

() Bising edge sensitive | (3) High level sensitive

[< Back. ” Hest >] [LCancel]

DS967_27_012307

Figure 27: Defining the IP Interrupt Signal and its Sensitivity

XAPP967 (v1.1) February 26, 2007

www.Xxilinx.com

19

http://www.xilinx.com

Importing the Custom IP back into EDK

SXILINX®

11. In the Parameter Attributes window, make the selections shown in Figure 28 to set the
default values for the user parameters and for the IPIF parameters.

Double click on Default Value, then select virtex4, then click Next.

‘& Import Peripheral - Parameter Atiribules

Parameter Attributes
Identity the parameters that require special handing :‘\\/Iip
Select the parameter on the left and fill in the attribute values to the right. These attibutes help the various tools in EDK to integrate thiz
peripheral inta the system it is instantiated in.
| - List Lser Parameters only - v| Aibues
C_USER_ID_CODE Parameter Name C_FamILY
C_FAMILY Dot foie]
Default Value (Jirtext)
[[] Display advanced attributes
o][t] (G

DS967_28_012307

Figure 28: Defining Default Values for the User/IPIF Parameters

12. In the Port Attributes window, make the selections shown in Figure 29 to identify the ports
that require special handling. Set the attributes to the user ports and user interrupts ports,
if any. Because in this custom IP only the interrupt pin comes out from the user logic side,
accept the default values.

After the selections have been made, click Next, then click Finish.

% Import Peripheral - Port Attributes

Port Attributes
Identify the parts that require special handling,

Select the port on the left and fill in the attibute values to the right. These attibutes help the various tools in EDK ta

integrate this peripheral into the syster it is instantiated in
User_FIFOs_Status_Flag
Output

iTEISt Interrupt Parts only - :- attributes;

Port Hame
Direction Mode
Default Connection

Vector Dimension

[[] Display advanced attibutes

<Back [Mew> | [Camesl |

i

DS967_29_012307

Figure 29: Defining the Advanced Attributes of the User Ports

The importing of the OPB custom IP back into the EDK environment is now completed.

The new custom IP name is opb_ipif_template, and the version is v.1.10.a.

Check the pcores directory to confirm that a new directory,
\\xapp967\pcores\opb_ipif_template_vl_10_a\, has been created by the Wizard

for this new IP.

XAPP967 (v1.1) February 26, 2007

www.Xxilinx.com

20

http://www.xilinx.com

Configuring the New Custom OPB IP in an XPS Project 2:X||_|NX®

Configuring the
New Custom
OPB IP in an
XPS Project

In XPS, the MHS file contains the parameters, the bus connections, and the port connections
for the cores in the system. This file can be appended using the Add/Edit Core User Interface.

The configuration of the new IP will begin from the last block in the Design Flow for an OPB
IPIF-based Custom IP diagram shown in Figure 1. After adding the newly-created IP core, the
core will be configured, and then the system hardware will be implemented.

1. Open XPS, then open the project located under \\xapp967\system.xmp.
2. In XPS, in the Project Information Area (left side of XPS GUI), select the IP Catalog tab.

3. Select opb_ipif_template Version 1.10.a, then drag and drop it into the system assembly
view (right side of XPS GUI).

The custom IP has been added to the system IP components. The IP must now be connected
to the bus.

4. To do so, make the selections as shown in Figure 30.
a. Select Bus Interface under Filters
b. Select opb_ipif_template_0 in the system assembly

c. Click on the green intersection with the OPB as shown in Figure 30 to connect the
opb_ipif_template_0 OPB master and slave interfaces to the system OPB.

& Filters
o © (&) Buslnterface () Ports () Addresses
4 | Mame Buz Connection | IP Type IP Yersion
. e | E-Pppodl5 0 ppcd0S_vitesd 1.01.a
| B>
| - opb opb_v20 1.10¢c
B | @< plbZoph plb2opb_bridge 1.01.a
| #-<#jtagppe_0 jtagppc_critlc 200a
PA | | @-<#R5232_Uart opb_uartlite 1.00b
| @
| @< opb_bram_if_cntl_1 opb_bram_if_cntlr 1.00.a
| @< opb_bram_if_cntl_2 opb_brar_if_cntlr 1.00.a
G | E-<opb_inte_ 0 opb_intc 1.00.c
B (G o e D
é MSOFE oph
| F-<rezet_block proc_sys_reset 1.00.a
e | (- <@ plb_bram_if_cntl_1_bram bram_block 1.00.a
: 1 J | E-<@opb_bram_if_cntl_1_bram bram_block 1.00.a
] | : | ®-<#opb_bram_if_cntlr_2_bram bram_block 1.00.a
A | E-<dem_0 dern_module 1.00.a
DS967_30_012307

Figure 30: Connecting the Custom IP to the OPB Bus

5. Inthe system assembly view, Figure 30, double click on opb_ipif_template 0 to open the
opb_ipif template vl 10 a window in which address configurations can be assigned.

XAPP967 (v1.1) February 26, 2007 www.xilinx.com 21

http://www.xilinx.com

Customizing the OPB IPIF SW Interface and Drivers 2:X||_|NX®

6. Inthe opb_ipif template_ vl 10 _a window shown in Figure 31, assign a valid
C_BASEADDR to the opb_ipif _template_0, for example: the value 0x60000000.

7. Assign a valid C_HIGHADDR to the opb_ipif_template_0, for example: the Value
0x6000FFFF.

Note: The opb_ipif_template IP requires 0x10000 of the OPB memory space.

% opb_ipif_template_0O : opb_ipif_template_v1_10_a

HOL 5 -]

Togagle Mames | | Datashest | | Restore

A
'8 : 'l
[C_BASEADDR |0x60000000 |] |
[EI_HIGHADDFE [oxe000£ece] !
C_OFB_&wIDTH Auto Computed i

0K J [Cancel]

DS967_31_012307

Figure 31: Specifying the Address Range for the Custom IP

In the system assembly view shown in Figure 30, select Ports under Filters, then connect the
custom IP interrupt signal to the OPB interrupt controller. Connect the
User_FIFOs_Status_Flag port to the Global output port. This signal will be connected to an
LED on the ML403 board.

The custom IP has been added into the XPS Project, and the core parameters have been
configured. The system can now be implemented by XPS.

In XPS, click on Hardware and then on Generate bitstream to generate the system hardware.

Customizi ng During the OPB IPIF template generation process, the IPIF wizard generated a <drivers>
the OPB IPIF folder in the project directory area for the template IP. These drivers will make the IP

registers interface visible to the software application running on the embedded system.
SW Interface

and Drivers In addition, during the generation process, some template hardware properties in the user logic

side were modified. No changes were made in the software interface side. Therefore, the
software drivers remain usable with the new custom IP without any modification.

To add some high-level functionality that the custom IP can perform, new functions based on
the software interface to the drivers source code can be added.

The drivers are in the \\xapp967\drivers\ folder.

Custom IP Registers Software Interface:
These definitions are provided in the header file opb_ipif_template.h which is located
under \\xapp967\drivers\opb_ipif template_vl_ 00_a\src\.

In this header file all the memory mapping of the registers is provided per IPIF service. Note the
following offsets:

IPIF Reset/Mir Space Register Offsets

IPIF Interrupt Controller Space Offsets

IPIF DMA & Scatter Gather Space Offsets

IPIF Read Packet FIFO Register/Data Space Offsets

XAPP967 (v1.1) February 26, 2007 www.xilinx.com 22

http://www.xilinx.com

Customizing the OPB IPIF SW Interface and Drivers 2:X||_|NX®

IPIF Write Packet FIFO Register/Data Space Offsets

For each offset, the relative registers mapping is defined, thereby making the custom OPB IPIF
services visible to the software application.

Also given are all the mask definitions required to set up the corresponding IPIF service and to
understand the data field values of these registers. Note the following mask definitions:

IPIF Reset/Mir Masks

IPIF Interrupt Controller Masks
IPIF DMA & Scatter Gather Masks
IPIF Read Packet FIFO Masks
IPIF Write Packet FIFO Masks

The function prototypes and the definitions are provided in this header file. These functions
allow the handling of the OPB IPIF custom IP services from the software application.

Drivers Functions Description

General Drivers functions
Write a value to the OPB_IPIF_TEMPLATE register:

void OPB_IPIF_TEMPLATE_mWriteReg(Xuint32 BaseAddress, unsigned RegOffset,
Xuint32 Data).

Read a value from an OPB_IPIF_TEMPLATE register:

Xuint32 OPB_IPIF_TEMPLATE_mReadReg(Xuint32 BaseAddress, unsigned RegOffset).
A self-test function of the driver/device:

XStatus OPB_IPIF_TEMPLATE_SelfTest(void * baseaddr_p).

Note: This may be a destructive test if resets of the device are performed. baseaddr_p is the base
address of the OPB_IPIF_TEMPLATE instance.

Functions for the RESET/MIR Services:

Reset the OPB_IPIF_TEMPLATE via software:
void OPB_IPIF_TEMPLATE_mReset(Xuint32 BaseAddress).

Read module identification information from OPB_IPIF_TEMPLATE device:
Xuint32 OPB_IPIF_TEMPLATE_mReadMIR(Xuint32 BaseAddress).

Functions for the DMA Services:

Reset DMA channel 0 (Write or Transmit side) of OPB_IPIF_TEMPLATE to initial state:
void OPB_IPIF_TEMPLATE_mResetDMAO(Xuint32 BaseAddress).

Reset DMA channel 1 (Read or Receive side) of OPB_IPIF_TEMPLATE to initial state:
void OPB_IPIF_TEMPLATE_mResetDMA1(Xuint32 BaseAddress).

Set/Get DMA control register of OPB_IPIF_TEMPLATE DMA channel:

void OPB_IPIF_TEMPLATE_mSetDMAOQOControl(Xuint32 BaseAddress, Xuint32 Mask).
void OPB_IPIF_TEMPLATE_mSetDMA1Control(Xuint32 BaseAddress, Xuint32 Mask).
Xuint32 OPB_IPIF_TEMPLATE_mGetDMAOControl(Xuint32 BaseAddress).
Xuint32 OPB_IPIF_TEMPLATE_mGetDMA1Control(Xuint32 BaseAddress).

Get DMA status register of OPB_IPIF_TEMPLATE DMA channel:

XAPP967 (v1.1) February 26, 2007 www.xilinx.com 23

http://www.xilinx.com

Customizing the OPB IPIF SW Interface and Drivers 2:X||_|NX®

Xuint32 OPB_IPIF_TEMPLATE_mGetDMAOStatus(Xuint32 BaseAddress).
Xuint32 OPB_IPIF_TEMPLATE_mGetDMA1Status(Xuint32 BaseAddress).
bool OPB_IPIF_TEMPLATE_mDMAOError(Xuint32 BaseAddress).
bool OPB_IPIF_TEMPLATE_mDMAZ1Error(Xuint32 BaseAddress).
bool OPB_IPIF_TEMPLATE_mDMAODone(Xuint32 BaseAddress).
bool OPB_IPIF_TEMPLATE_mDMA1Done(Xuint32 BaseAddress).

DMA channel 0 transfer between source address and destination address:

void OPB_IPIF_TEMPLATE_DMAOTransfer(Xuint32 BaseAddress, Xuint32 SrcAddress,
Xuint32 DstAddress, Xuint32 ByteCount).

Note: The destination address must be local to the OPB_IPIF_TEMPLATE device.
DMA channel 1 transfer between source address and destination address:

void OPB_IPIF_TEMPLATE_DMA1Transfer(Xuint32 BaseAddress, Xuint32 SrcAddress,
Xuint32 DstAddress, Xuint32 ByteCount).

Note: The source address must be local to the OPB_IPIF_TEMPLATE device.
Functions for the Read Packet FIFO Service:
Reset read packet FIFO of OPB_IPIF_TEMPLATE to its initial state:

void OPB_IPIF_TEMPLATE_mResetReadFIFO(Xuint32 BaseAddress).
Check status of OPB_IPIF_TEMPLATE read packet FIFO module:

bool OPB_IPIF_TEMPLATE_mReadFIFOEmpty(Xuint32 BaseAddress).
Xuint32 OPB_IPIF_TEMPLATE_mReadFIFOOccupancy(Xuint32 BaseAddress).

Read data from OPB_IPIF_TEMPLATE read packet FIFO module:
Xuint32 OPB_IPIF_TEMPLATE_mReadFromFIFO(Xuint32 BaseAddress).

Functions for the Write Packet FIFO Service:
Reset write packet FIFO of OPB_IPIF_TEMPLATE to its initial state:

void OPB_IPIF_TEMPLATE_mResetWriteFIFO(Xuint32 BaseAddress).
Check status of OPB_IPIF_TEMPLATE write packet FIFO module:

bool OPB_IPIF_TEMPLATE_mWriteFIFOFull(Xuint32 BaseAddress).
Xuint32 OPB_IPIF_TEMPLATE_mWriteFIFOVacancy(Xuint32 BaseAddress).

Write data to OPB_IPIF_TEMPLATE write packet FIFO module:
void OPB_IPIF_TEMPLATE_mWriteToFIFO(Xuint32 BaseAddress, Xuint32 Data).

Functions for the Interrupt Service:
Enable all possible interrupts from OPB_IPIF_TEMPLATE device:

void OPB_IPIF_TEMPLATE_Enablelnterrupt(void * baseaddr_p).
Note: baseaddr_p: is the base address of the OPB_IPIF_TEMPLATE instance to be worked on

A default Example interrupt controller handler:

void OPB_IPIF_TEMPLATE_Intr_DefaultHandler(void * baseaddr_p).
Note: baseaddr_p: is the base address of the OPB_IPIF_TEMPLATE instance to be worked on
Customizing the opb_ipif_template drivers:

To add custom functions to the opb_ipif_template drivers, define the required functions
prototype, add them to the header file opb_ipif_template.h, then provide their source

XAPP967 (v1.1) February 26, 2007 www.xilinx.com 24

http://www.xilinx.com

Customizing the OPB IPIF SW Interface and Drivers 2:X||_|NX®

code, either as inline macro functions in the same header file or write the body functions in the
opb_ipif_template.c source file.

The OPB_IPIF_TEMPLATE_Write1KB functionl resets the custom IP, writes 1024 Bytes to the
write FIFO using channel 0 DMA, that is then written and added to the drivers. Its prototype is:

XStatus OPB_IPIF_TEMPLATE_WritelKB(Xuint32 SrcAddress, Xuint32 BaseAddress);

The body of this function is added to the source file opb_ipif_template.c.

XStatus OPB_IPIF_TEMPLATE_Write1KB(Xuint32 SrcAddress, Xuint32 BaseAddress)
{

Xuint32 pfifo_status = 0;

Xuint32 IPIF_Temp_B_Addr;

Xuint32 pfifo_vacancy;

Xuint32 dma_ctrl_mask;

Xuint32 dma_status;

IPIF_Temp_B_Addr = BaseAddress;
/I Reset the OPB IPIF Template IP:
OPB_IPIF_TEMPLATE_mReset(IPIF_Temp_B_Addr);

/I Check status of OPB_IPIF_TEMPLATE write packet FIFO module:
pfifo_status = OPB_IPIF_TEMPLATE_mWriteFIFOFull(IPIF_Temp_B_Addr);
if (pfifo_status ==1)

{

return WRFIFO_FULL_MASK;

}

/I Check that the Vacancy (in Words) of the Write FIFO can hold the 1KB of Data:
pfifo_vacancy = OPB_IPIF_TEMPLATE_mWriteFIFOVacancy(IPIF_Temp_B_Addr);

if (pfifo_vacancy < 1024/4)

{
return WRFIFO_FULL_MASK;

}

/I Reset the Channel 0 DMA:
OPB_IPIF_TEMPLATE_mResetDMAO(IPIF_Temp_B_Addr);

/I Setup the Channel 0 DMA Control Register:

/I - The Source Address is a Memory Buffer, therefore the Source Address should be
incremented.

/I - The Destination Address is Local since it is the Write FIFO.

dma_ctrl_mask = DMA_SINC_MASK | DMA_DLOCAL_MASK:;

XAPP967 (v1.1) February 26, 2007

www.Xxilinx.com 25

http://www.xilinx.com

Customizing the OPB IPIF SW Interface and Drivers SIX"JNX®

OPB_IPIF_TEMPLATE_mSetDMAOQControl(IPIF_Temp_B_Addr, dma_ctrl_mask);

/I Set the Source Address and Start the DMA Transfer.

/I The destination address is local to the OPB_IPIF_TEMPLATE device:

/l'In this case it is the Write Packet FIFO:
OPB_IPIF_TEMPLATE_DMAOQTransfer(IPIF_Temp_B_Addr, SrcAddress, 0, 1024);

/I Check if the DMA Transfer has finished:
dma_status = OPB_IPIF_TEMPLATE_mDMAODone(IPIF_Temp_B_Addr);
while(dma_status '=1);

/I Check if the DMA Transfer was achieved with No Errors:
dma_status = OPB_IPIF_TEMPLATE_mDMAOQError(IPIF_Temp_B_Addr);

if (dma_status == 1)

{
return DMA_DBE_MASK;

}

return XST_SUCCESS;

Assigning the Drivers to the Opb IPIF Template in XPS

In XPS, in the Software Platform Setting window, assign the drivers to the opb ipif template IP,
such as for an EDK IP.

In XPS, use the Software Menu. Click on Software Platform Setting.

In the Software Platfom Settings window, select Drivers, then in the Drivers Configuration
section, select opb_ipif _template under the Driver heading as shown in Figure 32.

Dirves Pansmetars

3 Cancel |
DS967_32_012307

Figure 32: Assigning Drivers to the opb_ipif_template IP

Once LibGen is run from XPS, the drivers will be precompiled into the 1ibxil.a Library, the
header file is copied to the <include> folder, and the source files will be copied into the
<libsrc> folder.

XAPP967 (v1.1) February 26, 2007 www.xilinx.com 26

http://www.xilinx.com

Writing a SW Application using the New Custom IP

SXILINX®

Writing a SW
Application
using the New
Custom IP

These LibGen generated folders are located in the XPS project area under the Processor
Instance Name folder.

Because the custom IP has interrupt capability, an interrupt handler can be assigned if this IP
is used with interrupt in the system. Using the Software Platform Setting GUI, assign the
interrupt service routine for the opb_ipif_template IP by selecting Interrupt Handlers, then
typing the function name, My_ip_Interrupt_Handler in the Handler Interrupt column as
show in Figure 33. Click OK.

= Saftware Platform Settings
Firrmsmn Irianslen

Sofvuane Platiom Irtemupt Handiers Configurstion:

0% and Libwevies Fal Nams Mdairupl Hisdior Dedensh Horecher Topt Drsciptin

Diboers inkc - ookt 0

Ininangk Harclers iy My_in_Irnbemipt HMP.‘ Iric_DevceinbenuptH andie sy Ireupd handie o
= opb_icd_templale - cob_ipil_template

IEANTC It DIEB_IFIF_TEMPLATE int_Dedoxidnndles shirg Inbompt hondie: fu
< 5
Ca=]

DS967_33_012307

Figure 33: Assigning Interrupt Handler to the opb_ipif Template IP

After the software interface has been established, the next step is to write the software for the
hardware platform that was just constructed.

The data flow illustrated in Figure 34 is implemented in the application software.

OPB BRAM-1 Buffer MY OPB IPIF IP
MTU Data: 4096 B DVA 1 \Write FIFO ﬁ
Loop back
OPB BRAM-2 Buffer Read FIFO [= J
MTU Data: 4096 B
DMA X967_34_012307

Figure 34: Data Flow Diagram

In the Reference Design associated with this Application Note, a SW Project is given in which
the Processor creates a Data Structure in the BRAM Buffer 1, and sets the opb ipif template IP
DMA Channel 0 engine to transfer the Data Buffer to its Transmit FIFO.

The Data is then looped back inside the custom logic of the IP to the Receive FIFO; once the
Receive FIFO is full, an Interrupt Signal is sent to the Processor to decide what to do with the
Data Packet Received by the Custom OPB IP.

This kind of approach is useful for Data Encryption if the user logic is encrypting the Data
before looping it back to the Read FIFO of the Custom IP.

XAPP967 (v1.1) February 26, 2007

www.Xxilinx.com 27

http://www.xilinx.com

Writing a SW Application using the New Custom IP 2:X||_|NX®

Building the SW Application in XPS:

The first step in building the required software application to run on the new hardware platform
is to understand the mechanism already implemented on the given design. The software
application is represented by the flow chart in Figure 35.

In this application the processor starts by initializing the BRAM Buffer 1 with known data values,
it sets the opb ipif template DMA Channel 0 engine to transfer the data buffer from BRAM 1 to
its transmit FIFO. Once the DMA operation is done, the processor checks if the DMA operation
was successful or not, then waits for an interrupt from the opb ipif template IP.

Once the receive FIFO is full, i.e. the data packet is ready for the processor consumption, the
interrupt service handler is called, which triggers another DMA transfer from the receive FIFO
using DMA Channel 1. Once the transfer to the memory buffer 2 is finished, the processor
proceeds to checking if the content of BRAM 2 buffer is as expected (same as BRAM 1 buffer);
a status message is then displayed to the UART which is used as a user interface in this
application.

In this transfer process using the transmit and receive DMA engines, the processor needs to
initialize the DMA registers accordingly using the set of drivers associated with the custom IP in

this design.

System
Initialization

'

Set up the
System Interrupt

Initialize Memory Buffer 1
with known Data

Y

System _ ¥
Initialization Display DMA
‘ Done Message

Check the
DMA Transfer

OPB IPIF

No Interrupt

i Status Template
Display DMA Interrupt /
Error OPB IPIF Template
* Interrupt Service Routine
Check the ‘
DMA Status
* Compare Data Received
Display DMA with Expected Data
Error Type ¢
w Print the Results
Reset DMA
Engine ¢
Exit

X967_35_012407

Figure 35: DMA Operation with the OPB IPIF Template

XAPP967 (v1.1) February 26, 2007 www.xilinx.com 28

http://www.xilinx.com

Implementing and Verifying the Design 2:X||_|NX®

Im plem enti ng Now the Design is ready to be implemented in order to download it to the Board and verify the
and Verifyi ng System functionality over the UART Terminal.

the Desig n 1. Connect the Board to the PC using a Serial Cable and the JTAG Cable and Power up the
Board.

2. Start a Hyper-terminal session with the following settings:
coml
Bits per second: 9600
Data bits: 8
Parity: None
Stop bits: 1
Flow control: None
3. Implement the Design in XPS and download it to the Board.
4. The HyperTerminal Window displays as shown in Figure 36.

5 Tera Term - COM1 VT

File Edit Setup Contral Window Help

¥ilinx ML4B3 Board
XAPP 967:
Creating an OPB IPIF Based IP and using it in an EDK System

LR
)

——» Initializing the QOPB Interrupt Controller returned Ho Errors
—=>» Connecting the OPB IPIF Template Interrupt Handler returned No Errors
——>» The OPB Interrupt Controller Started with Ne Errors
— Reset DMA channel B to initial state
— Setup DMA channel to transfer data from remote source to local FIFQ
— 8tart DMA channel B to receive bytes from the source buffer

— Device Interrupt? DISR value : BxBEUEOBE4

— User logic interrupt?

— DMA channel @ transfer completed

— Reset DMA channel 1 to initial state

— S8etup DMA channel 1 to transfer data from local FIF0Q to remote destination
— Start DMA channel 1 to send bytes to the destination buffer

— DMA channel 1 transfer completed

— Destination Buffer’s contents match the Send Buffer’s Contents

End of main(Of b
DS967_365_120706

Figure 36: HyperTerminal Display

References DS414 OPB IPIF Architecture - http://www.xilinx.com/bvdocs/ipcenter/data_sheet/opb_ipif.pdf
Revision The following table shows the revision history for this document.
HIStOI’y Date Version Revision

2/5/07 1.0 Initial Xilinx release.

2/26/07 1.1 Changed title; Added reference link

XAPP967 (v1.1) February 26, 2007 www.xilinx.com 29

http://www.xilinx.com

	Creating an OPB IPIF-based IP and Using it in EDK
	Abstract
	Included Systems
	Introduction
	Hardware and Software Requirements
	Overview of the OPB IPIF Services
	Block Diagram
	OPB IPIF Services Software Interface Registers
	OPB IPIF Services Memory Mapping
	Identifying the OPB IPIF Services to Use
	Generating the Required OPB IPIF Core Template

	Customizing the User Logic Side of the Template in ISE
	Customizing User IOs:

	Customizing User Logic Interrupts
	Custom IP Naming and Version:

	Importing the Custom IP back into EDK
	Configuring the New Custom OPB IP in an XPS Project
	Customizing the OPB IPIF SW Interface and Drivers
	Custom IP Registers Software Interface:
	Drivers Functions Description
	General Drivers functions
	Functions for the RESET/MIR Services:
	Functions for the DMA Services:
	Functions for the Read Packet FIFO Service:
	Functions for the Write Packet FIFO Service:
	Functions for the Interrupt Service:
	Customizing the opb_ipif_template drivers:

	Assigning the Drivers to the Opb IPIF Template in XPS

	Writing a SW Application using the New Custom IP
	Building the SW Application in XPS:

	Implementing and Verifying the Design
	References
	Revision History

