
(v1.0) April 1, 2009 www.xilinx.com 1

© 2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries.
All other trademarks are the property of their respective owners.

Summary Discusses the use of U-Boot to boot over the network and on-board flash, programming flash
images with u-boot, generating JFFS2 flash file systems, and obtaining and building U-Boot.
Building Linux kernel images suitable for use with U-Boot is also discussed.

THIS DOCUMENT IS NOT SUPPORTED BY XILINX. DO NOT CONTACT CUSTOMER
SUPPORT WITH QUESTIONS REGARDING THIS HOWTO GUIDE.

Included
Systems

Included with this howto guide is one reference system built for the Xilinx ML507 Rev A board

Introduction The Universal Bootloader, formally known as Das U-Boot, is a very capable open source
bootloader supporting several embedded platforms. This HOWTO guide is an introduction to
using U-Boot on the Xilinx ML507 development board. Topics covered include obtaining Xilinx
open source software, including U-Boot and the Linux kernel, building U-Boot, creation of
JFFS2 Flash Filesystems, programming the necessary images into flash with the Xilinx
FlashWriter utility, booting from flash, booting from the network, and using U-Boot to program
flash images.

Target Audience This HOWTO guide best serves users who are already comfortable with building and using
Linux.

Hardware And
Software
Requirements

The hardware and software requirements for this reference system are:

 Xilinx ML507 Rev A board

 Xilinx Platform USB or Parallel IV programming cable

 RS232 serial cable and serial communication utility (HyperTerminal)

 Xilinx Platform Studio 11.1

 Xilinx Integrated Software Environment (ISE®) 11.1

 Xilinx Open Source Linux

 Xilinx Open Source U-Boot

 Suitable PowerPC processor toolchain and Linux Root File System, such as DENX ELDK.

 (optional) GIT revision control software

 (optional) Network cable and host PC for TFTP server functionality

Reference
System
Specifics

(v1.0) April 1, 2009

Using U-Boot with the Xilinx ML507
Evaluation Platform

R

http://www.xilinx.com

Executing the Reference System

(v1.0) April 1, 2009 www.xilinx.com 2

R

Address Map

Executing the
Reference
System

Using HyperTerminal or a similar serial communications utility, map the operation of the utility to
the physical COM port to be used. Then connect the UART of the board to this COM port. Set
the HyperTerminal to the Bits per second to 9600, Data Bits to 8, Parity to None, and Flow
Control to None.

Executing the Reference System using the Pre-Built Bitstream and the
Compiled Software Application

To execute the system using files in the ready_for_download/ directory in the project root
directory, follow these steps:

1. Change directories to the ready_for_download directory.

2. Use iMPACT to download the bitstream by using the following command:

impact -batch impact-batch.cmd

3. Proceed to the “Program the Bootloader into Flash with Xilinx FlashWriter” section, using
the U-Boot image provided in the ready_for_download area.

Executing the Reference System from XPS for Hardware

To execute the system for hardware using XPS, follow these steps:

1. Open system.xmp in XPS.

2. Select HardwareGenerate Bitstream to generate a bitstream for the system.

3. Select Device ConfigurationDownload Bitstream to download the bitstream.

4. Proceed to the “Program the Bootloader into Flash with Xilinx FlashWriter” section, using
the U-Boot image provided in the ready_for_download area.

Obtaining the
Software

The user will need to obtain source code for U-Boot, the Linux kernel, and the Linux kernel BSP
generator in order to complete the tasks discussed in this HOWTO guide. These are all
available on the Xilinx public GIT server. GIT is a distributed revision control system. Installation
and usage of GIT are beyond the scope of this HOWTO guide; consult XAPP1107 for additional
information.

Table 1: Reference System Address Map

Peripheral Instance Base Address High Address

ppc440mc_ddr2 DDR2_SDRAM 0x00000000 0x0FFFFFFF

xps_gpio Push_Buttons_5Bit 0x81400000 0x8140FFFF

xps_iic IIC_EEPROM 0x81600000 0x8160FFFF

xps_intc xps_intc_0 0x81800000 0x8180FFFF

xps_ll_temac Hard_Ethernet_MAC 0x81C00000 0x81C0FFFF

xps_sysace SysACE_CompactFlash 0x83600000 0x8360FFFF

xps_uart16550 RS232_Uart_2 0x83E00000 0x83E0FFFF

xps_uart16550 RS232_Uart_1 0x83E20000 0x83E2FFFF

xps_mch_emc FLASH 0xFE000000 0xFFFFFFFF

http://www.xilinx.com/support/documentation/application_notes/xapp1107.pdf
http://www.xilinx.com

Obtaining the Software

(v1.0) April 1, 2009 www.xilinx.com 3

R

Obtaining the Software with GIT

Users which do not have GIT installed, or who do not wish to use GIT should proceed to the
“Obtaining a snapshot of the software without GIT” section.

Users which already have GIT properly installed may obtain the latest versions of the required
software with the following commands:

1. Obtain the latest Linux 2.6 kernel

$ mkdir <project area>
$ cd <project area>
$ git clone git://git.xilinx.com/linux-2.6-xlnx.git

(OPTIONAL) Revert to the version used with this HOWTO guide. This version has been
demonstrated to work as described in this document without modification. Perform after cloning
the tree.

$ cd linux-2.6-xlnx
$ git checkout 09326d64

2. Obtain the latest device tree generator

$ cd <project area>
$ git clone git://git.xilinx.com/device-tree.git

(OPTIONAL) Revert to the version used with this HOWTO guide. This version has been
demonstrated to work as described in this document without modification. Perform after cloning
the tree.

$ cd device-tree
$ git checkout 8fbfa99e

3. Obtain the latest u-boot

$ cd <project area>
$ git clone git://git.xilinx.com/u-boot-xlnx.git

(OPTIONAL) Revert to the version used with this HOWTO guide. This version has been
demonstrated to work as described in this document without modification. Perform after cloning
the tree.

$ cd u-boot-xlnx
$ git checkout 9abed00d

Obtaining a snapshot of the software without GIT

A snapshot of the source tree may be obtained from git.xilinx.com as a compressed tar file.

The exact revisions used to create this HOWTO guide can be obtained with the following links:

device-tree

linux-2.6-xlnx

u-boot

Note: In the future these direct links may not be available, and the user may need to navigate to the
desired snapshot directly from the git.xilinx.com page.

Obtaining a toolchain

To build any of the software used in this HOWTO guide, the user will require a an appropriate
PowerPC toolchain (compiler, linker, etc...). Linux will also require a Root File System. If the
user does not already have these resources available, the DENX ELDK 4.1 is one example
implementation which is freely available. This HOWTO guide utilizes the ELDK, which can be
found at http://www.denx.de/wiki/DULG/ELDK. Toolchain installation is beyond the scope of
this HOWTO guide.

http://git.xilinx.com
http://git.xilinx.com/cgi-bin/gitweb.cgi?p=u-boot-xlnx.git;a=snapshot;h=9abed00d387dfabebd4372bcd0083c45ed1ea117
http://git.xilinx.com/cgi-bin/gitweb.cgi?p=linux-2.6-xlnx.git;a=snapshot;h=09326d649923e7635b504a0e61f9032794fd8c17
http://git.xilinx.com/cgi-bin/gitweb.cgi?p=device-tree.git;a=snapshot;h=8fbfa99e6d6ee46363b7c9c263ceb386231c7380
http://www.xilinx.com
http://www.denx.de/wiki/DULG/ELDK

Generate the BSP

(v1.0) April 1, 2009 www.xilinx.com 4

R

Generate the
BSP

Open the EDK project in XPS. Choose Software Software Platform Settings. Choose
device-tree in the OS & Library Settings list box. Select version 0.00.x.

Click OS and Lib Configuration. Expand the device-tree item and enter RS232_Uart_1 in the
console section. Click OK.

In XPS, select Software Generate Libraries and BSPs.

Copy <edk system>/ppc440_0/libsrc/device-tree/xilinx.dts to <project
area>/linux-2.6-xlnx/arch/powerpc/boot/dts/virtex440-ml507.dts

Copy <edk system>/ppc440_0/include/xparameters.h to <project area>/u-
boot-xlnx/board/xilinx/ml507/xparameters.h

Edit the file <project area>/u-boot-xlnx/board/xilinx/ml507/xparameters.h
to match the changes shown in red:

#define XPAR_CPU_PPC440_CORE_CLOCK_FREQ_HZ 400000000
#define XPAR_CORE_CLOCK_FREQ_HZ XPAR_CPU_PPC440_CORE_CLOCK_FREQ_HZ

Build U-Boot Modify the u-boot source

The user must use the correct xparameters.h file which accurately describes the hardware
u-boot will run on. This is described in the “Generate the BSP” section.

The source provided will generate a u-boot image intended to be run from RAM. This is useful
for testing u-boot, but is not suitable to real world deployments. The configuration is edited so
that the u-boot image will run from the on board flash.

Edit include/configs/ml507.h and make the changes or additions shown in red:

#define CONFIG_PPC 1
#define CONFIG_CMDLINE_TAG 1

#if ! (defined(CFG_ENV_IS_IN_FLASH) || defined(CFG_ENV_IS_IN_EEPROM))
#define CFG_ENV_IS_NOWHERE 1 /* no space to store environment */

X-Ref Target - Figure 1

Figure 1: OS & Library Settings

X-Ref Target - Figure 2

Figure 2: OS an Lib Configuration

http://www.xilinx.com

Program the Bootloader into Flash with Xilinx FlashWriter

(v1.0) April 1, 2009 www.xilinx.com 5

R

#define CFG_ENV_SIZE 256

#define CFG_MONITOR_BASE 0xFFFC0000

#endif

/* following are used only if env is in EEPROM */
#ifdef CFG_ENV_IS_IN_EEPROM
#define CFG_I2C_EEPROM_ADDR (0xA0 >> 1)
#define CFG_I2C_EEPROM_ADDR_LEN 1
#define CFG_I2C_EEPROM_ADDR_OVERFLOW 0x3
#define CFD_I2C_EEPROM_SIZE 8192
#define CFG_ENV_OFFSET 256
#define CFG_ENV_SIZE 1024
#define CFG_EEPROM_PAGE_WRITE_BITS 4
#define CFG_EEPROM_PAGE_WRITE_DELAY_MS 5
#define CONFIG_ENV_OVERWRITE 1 /* writable ethaddr and serial# */

#define CFG_MONITOR_BASE 0xFFFC0000

Edit board/xilinx/ml507/config.mk and make the changes shown in red:

TEXT_BASE = 0xFFFC0000
#TEXT_BASE = 0x02000000

Build a U-Boot image

Indicate which toolchain is to be used. This below will work with a properly installed ELDK. In
this case, ppc_4xx-gcc, etc... will be available in the user’s PATH.

$ export CROSS_COMPILE ppc_4xx-

Choose to use an in-flash configuration

$ make ml507_flash_config

Build the u-boot image

$ make ARCH=ppc

The image u-boot.bin is created.

Program the
Bootloader into
Flash with
Xilinx
FlashWriter

To use the u-boot image it must be programmed into the appropriate location in flash. This is
performed with the Xilinx FlashWriter utility.

Open the hardware project with XPS. Choose Device Configuration Program Flash
Memory. For the File To Program field choose the u-boot.bin file which was created in the
“Build U-Boot” section. Enter 0x01FC0000 in the Program at Offset field and click ‘OK’. See
Figure 3.

Note: A previously generate image file is available in the ready_for_download area.

http://www.xilinx.com

Build the Linux kernel

(v1.0) April 1, 2009 www.xilinx.com 6

R

When completed, the u-boot image will be programmed at the very end of flash memory, where
the processor boot vector is located. Press the ‘CPU RST’ button. The u-boot prompt => is
displayed.

Build the Linux
kernel

U-Boot may boot a Linux system in a wide variety of ways. Initially, booting from flash will be
discussed.

Configure the kernel

The Linux kernel is configured to include the appropriate drivers needed to access the on board
flash.

X-Ref Target - Figure 3

Figure 3: Program u-boot into flash with Flash Writer

http://www.xilinx.com

Build the Linux kernel

(v1.0) April 1, 2009 www.xilinx.com 7

R

Indicate which toolchain is to be used. This below will work with a properly installed ELDK.

$ export CROSS_COMPILE ppc_4xx-
$ cd <project area>/linux-2.6-xlnx

Copy the default ML507 kernel configuration to use as a starting point

$ cp arch/powerpc/configs/44x/virtex5_defconfig .config

Build and run the kernel menu config application

make ARCH=powerpc menuconfig

Submenus are chosen with <enter>, options are modified with <space>.

1. Enable Device Drivers Memory Technology Device (MTD) support (with the space
bar, making an asterisk (*) appear).

2. Choose Device Drivers Memory Technology Device (MTD) support (enter)

a. Enable MTD partitioning support

b. Enable Command line partition table parsing

c. Enable Direct char device access to MTD devices

d. Enable Caching block device access to MTD devices

3. Choose Device Drivers MTD Support RAM/ROM/Flash chip drivers

a. Enable Detect flash chips by Common Flash Interface (CFI) probe

b. Enable Support for Intel/Sharp flash chips

X-Ref Target - Figure 4

Figure 4: Memory Technology Device (MTD) support

http://www.xilinx.com

Build the Linux kernel

(v1.0) April 1, 2009 www.xilinx.com 8

R

4. Choose Device Drivers MTD Support Mapping drivers for chip access

a. Enable Flash device in physical memory map based on OF description

5. Enable File Systems Miscellaneous filesystems Journalling Flash File System
v2

X-Ref Target - Figure 5

Figure 5: MTD Flash chip drivers

X-Ref Target - Figure 6

Figure 6: MTD mapping driver

http://www.xilinx.com

Create a JFFS2 flash filesystem

(v1.0) April 1, 2009 www.xilinx.com 9

R

6. Exit and save the configuration.

Compile an image suitable for use with u-boot:

make ARCH=powerpc uImage

Note: A prebuilt image uImage is provided in the ready_for_download area.

The new image is created in linux-2.6-xlnx/arch/powerpc/boot/uImage.

Note: Building a uImage requires that the mkimage application be found in the users PATH. If the user
does not have mkimage installed elsewhere, an executable is built with U-Boot. This executable can be
found at <project area>/u-boot-xlnx/tools/mkimage.

Create a JFFS2
flash filesystem

A JFFS2 flash file system is used. JFFS2 images are created with the mkfs.jffs2 command.
The user must have this command installed locally to complete this procedure. Most Linux
distributions will already have this application available. For additional information the user may
look at http://sources.redhat.com/jffs2

A previously generated filesystem image jffs2-image.bin is provided in the
ready_for_download area.

A root filesystem ramdisk.image.gz is provided in the ready_for_download area. This
file is a compressed image of a native Linux EXT2 filesystem. The Linux mkfs.jffs2
command will copy a directory structure from the local filesystem into a JFFS2 image file. The
provided ramdisk image is mounted and used as source material for the JFFS2 filesystem.

Note: mkfs.jffs2 is not provided with the Xilinx EDK and must be installed separately by the user. It
is commonly available for all major Linux distributions.

Uncompress the image in a temporary location

cd <edk project>/ready_for_download
mkdir tmp
cp ramdisk.image.gz tmp
gunzip ramdisk.image.gz

Mount the EXT2 filesystem image into the local filesystem. The user must have root privileges
to perform this task.

mkdir ext2image
mount -o loop ramdisk.image ext2image

Create a JFFS2 filesystem image from the files in the ext2image directory

mkfs.jffs2 --big-endian --eraseblock=131072 --root=ext2image -o jffs2-
image.bin

The JFFS2 image <edk project>/ready_for_download/tmp/jffs2-image.bin is created. Unmount
the ext2 filesystem.

umount ext2image

Flash
Organization

The onboard flash must be logically divided into four separate areas to contain the various
objects needed to boot Linux in a standalone fashion with U-Boot. Table 2 shows the division
chosen in this HOWTO guide.

http://www.xilinx.com
http://sources.redhat.com/jffs2/

Prepare the device tree for U-Boot

(v1.0) April 1, 2009 www.xilinx.com 10

R

U-Boot will use images at any flash location and does not require that the user create any
logical structure describing the flash organization. Linux, however, requires an explicit definition
of all flash sections. This explicit definition is represented by Linux as partitions of the flash
device, much like fixed disk or any other mass storage partition. This configuration is presented
in the “Prepare the device tree for U-Boot” section.

Prepare the
device tree for
U-Boot

The steps in “Generate the BSP” created a text file known as a device tree, which the user then
copied to the appropriate kernel tree location. This file describes the hardware system on which
Linux will run. U-Boot will provide the location of a device tree in memory to the Linux kernel
upon boot. One of the entries within this file is the Linux bootargs. These are parameters
passed to the Linux kernel which direct startup configuration and behavior.

Modify the kernel command line to use the flash

The previously generated linux-2.6-xlnx/arch/powerpc/boot/dts/virtex440-
ml507.dts is edited so that the kernel command line reflects the text shown in red.

chosen {
 bootargs = "console=ttyS0 rootfstype=jffs2 root=/dev/mtdblock2 rw
mtdparts=fe000000.flash:4M(bits)ro,2M(kernel)ro,25M(rootfs),128k(dev-
tree),640K(unused),256K(uboot)";
 linux,stdout-path = "/plb@0/serial@83e20000";
 } ;

The bootargs, which are entered all as one single line, indicate the following:

1. The first serial port, ttyS0, is to be used as the console

2. The root filesystem is on the third partition of the flash device. This is referenced as
mtdblock2.

3. The flash partitions are defined with mtdparts. This mapping implements that specified in
“Flash Organization”.

The flash device name fe000000.flash is determined by the presence of the xps-mch-emc
peripheral in the virtex440-ml507.dts device-tree system description.

FLASH: flash@fe000000 {
 compatible = "xlnx,xps-mch-emc-3.00.a", "cfi-flash";
 reg = < 0xfe000000 0x2000000 >;

The use of this cfi-flash device was enabled by the user with the “Enable Flash device in
physical memory map based on OF description” kernel configuration option.

Table 2: Flash partitions

Start Address Offset Size

FPGA Bitstream 0xFE000000 0x00000000 0x00400000 (4M)

Linux Kernel 0xFE400000 0x00400000 0x00200000 (2M)

Root Filesystem 0xFE600000 0x00600000 0x01900000 (25M)

device tree 0xFFF00000 0x01F00000 0x00020000 (128K)

(unused) 0xFFF20000 0x01F20000 0x000A0000 (640K)

U-Boot 0xFFFC0000 0x01FC0000 0x00040000 (256K)

http://www.xilinx.com

Program Linux into flash with FlashWriter

(v1.0) April 1, 2009 www.xilinx.com 11

R

Compile the device tree

The device tree is maintained as a human readable text file. The kernel expects the device tree
in binary form. The device tree compiler is used to create a binary file

$ cd <project area>/linux-2.6-xlnx
$ arch/powerpc/boot/dtc -b 0 -V 17 -R 4 -S 0x3000 -I dts -O dtb -o ml507-
jffs2.dtb -f arch/powerpc/boot/dts/virtex440-ml507.dts

The file <project area>/linux-2.6-xlnx/ml507-jffs2.dtb is created.

Note: The executable arch/powerpc/boot/dtc was created in “Build the Linux kernel”.

Program Linux
into flash with
FlashWriter

The user has generated a Linux kernel, a JFFS2 root file system, and a device tree. These
items are now programmed into the chosen locations within the flash using Xilinx FlashWriter.
The user will follow the same procedure which was used to program u-boot in “Program the
Bootloader into Flash with Xilinx FlashWriter”.

Note: Prebuilt images are supplied in the ready_for_download area which may be utilized if the user has
not generated these images as instructed in this HOWTO guide.

1. Program <project area>/linux-2.6-xlnx/arch/powerpc/boot/uImage at
offset 0x00400000.

2. Program <EDK Project>/ready_for_download/tmp/jffs2-image.bin at offset
0x00600000.

3. Program <project area>/linux-2.6-xlnx/ml507-jffs2.dtb at offset
0x01F00000

4. If the user has not already completed the steps in “Program the Bootloader into Flash with
Xilinx FlashWriter” program <project area>/u-boot-xlnx/u-boot.bin at offset
0x01FC0000 at this time.

At this time, the user should press the “CPU RST” button on the board. The u-boot prompt is
displayed.

=>

Configure the
U-Boot
environment

U-Boot is very flexible. It can boot the target from a wide variety of sources with several different
configurations. The user configures U-Boot to boot the already programmed in-flash Linux at
this time.

U-Boot configuration is maintained in its environment. U-Boot should have the default
environment at this time. The U-Boot image built in this HOWTO guide is configured to use the
on board IIC EEPROM as nonvolatile storage of the U-Boot environment.

The printenv command will display the present environment

=> printenv
baudrate=9600
loads_echo=1
ethaddr=00:0A:35:01:CF:70
stdin=serial
stdout=serial
stderr=serial
...

The bootm command will boot Linux from an already in-memory image. The onboard NOR
flash is CPU addressable; the images programmed are in memory which U-Boot can boot from
directly.

http://www.xilinx.com

Booting over the network

(v1.0) April 1, 2009 www.xilinx.com 12

R

The user manually boots Linux with the bootm command, specifying the address of the
uImage and device tree in memory.

=> bootm 0xFE400000 - 0xFFF00000

After a few moments, the Linux command prompt appears. Reboot the system to return to the
U-Boot prompt.

root:~> reboot

The bootcmd environment variable is set to contain whatever U-Boot commands are
necessary to boot the desired image.

=> setenv bootcmd 'bootm 0xFE400000 - 0xFFF00000'

The environment is saved in nonvolatile storage

=> saveenv

Press the ‘CPU RST’ button on the ML507. Linux is automatically booted from flash.

Booting over
the network

U-Boot can fetch images over the network using TFTP. IP configuration and TFTP server
administration are beyond the scope of this HOWTO guide. All material provided in this section
pertaining to configuration of the TFTP server is intended as a quick reference only. Users
which are unfamiliar with these concepts may need additional reference material.

Configure the TFTP server

Linux

Typical Linux server installations will provide an already configured TFTP server. Files placed in
the /tftpboot directory are available to TFTP clients.

Note: Obtaining, installing, and configuring a Linux TFTP server is beyond the scope of this HOWTO
guide. If the user wishes to use a Linux TFTP server they should consult the pertinent documentation. All
further examples regarding TFTP boot in this HOWTO guide refer to Microsoft Windows.

Microsoft Windows

Windows has no traditional TFTP server. TFTPD32, which is freely available from
http://tftpd32.jounin.net is used in this HOWTO guide. It requires no installation and can be run
directly from the directory in which it has been downloaded.

Statically configure the Host PC IP address to 192.168.0.1. Existing version of Windows are
similar but differ in the exact steps to perform this task. Consult the applicable Microsoft
documentation.

Run the tftpd32 executable. A window similar to Figure 7 appears.

http://www.xilinx.com
http://tftpd32.jounin.net

Booting over the network

(v1.0) April 1, 2009 www.xilinx.com 13

R

Click Settings to configure the TFTP server. The user should choose a Base Directory (the
location of files the server makes available to TFTP clients). C:\tftpd is used. The user
should ONLY enable the TFTP Server. Enabling other services (especially DHCP) may
adversely affect the network the user is connected to and should only be done by
knowledgeable users. See Figure 8.

X-Ref Target - Figure 7

Figure 7: TFTPD32

http://www.xilinx.com

Booting over the network

(v1.0) April 1, 2009 www.xilinx.com 14

R

Click OK. Restart TFTPD32. At this time, any files present in C:\tftpd may be fetched from
the server by TFTP clients.

Connect the ML507 to the server network. They may either be directly cabled together or
connected through an ethernet switch.

Prepare the ramdisk image for use with U-Boot

The ramdisk image provided with this HOWTO guide, ramdisk.image.gz is found in the
ready_for_download area. It is a compressed EXT2 filesystem. This image must be
prepared for use with U-Boot.

$ cd <EDK Project>
$ mkimage -A ppc -O linux -T ramdisk -C gzip -d
ready_for_download/ramdisk.image.gz uramdisk.image

The file <EDK Project>/uramdisk.image is created. If the user does not have mkimage
installed elsewhere, an executable is built with U-Boot. This executable can be found at
<project area>/u-boot-xlnx/tools/mkimage.

Configure the U-Boot environment

Assign a static IP address to the target.

=> setenv ipaddr 192.168.0.5

Assign a default server address.

X-Ref Target - Figure 8

Figure 8: TFTPD32 settings

http://www.xilinx.com

Booting over the network

(v1.0) April 1, 2009 www.xilinx.com 15

R

=> setenv serverip 192.168.0.1

Verify connectivity by pinging the server.

=> ping 192.168.0.1
host 192.168.0.1 is alive

Save this configuration

=> saveenv

Modify the kernel command line to use a ramdisk

The previously generated linux-2.6-xlnx/arch/powerpc/boot/dts/virtex440-
ml507.dts is edited so that the kernel command line reflects the text shown in red.

chosen {
 bootargs = "console=ttyS0 root=/dev/ram rw
mtdparts=fe000000.flash:4M(bits)ro,2M(kernel)ro,25M(rootfs),128k(dev-
tree),640K(unused),256K(uboot)";
 linux,stdout-path = "/plb@0/serial@83e20000";
 } ;

The bootargs, which are entered all as one single line, indicate the following:

1. The first serial port, ttyS0, is to be used as the console

2. The root filesystem is a ramdisk

3. The flash partitions are defined with mtdparts. This mapping reflects that specified in
“Flash Organization”

Compile the device tree

The device tree is maintained as a human readable text file. The kernel expect the device tree
in binary form. The device tree compiler is used to create a binary file

$ cd <project area>/linux-2.6-xlnx
$ arch/powerpc/boot/dtc -b 0 -V 17 -R 4 -S 0x3000 -I dts -O dtb -o ml507-
ramdisk.dtb -f arch/powerpc/boot/dts/virtex440-ml507.dts

The file <project area>/linux-2.6-xlnx/ml507-ramdisk.dtb is created.

Note: The executable arch/powerpc/boot/dtc was created in “Build the Linux kernel”.

Fetch and boot Linux

At this time, the user will copy the uImage, uramdisk.image, and ml507-ramdisk.dtb
images to the C:\tftpd directory.

Fetch the images with TFTP, specifying the image to fetch and the memory location to store it.

=> tftp 0x1000000 ml507-ramdisk.dtb
=> tftp 0x1C00000 uImage
=> tftp 0x1800000 uramdisk.image

Boot the images which are now in memory

=> bootm 0x1c00000 0x1800000 0x1000000

Configure U-Boot to autoboot over the network

As seen in “Configure the U-Boot environment”, the bootcmd environment variable can be set
to contain U-Boot commands to automatically boot the board at startup.

http://www.xilinx.com

Programming the flash with U-Boot

(v1.0) April 1, 2009 www.xilinx.com 16

R

Configure U-Boot to autoboot over the network:

=> setenv bootcmd 'tftp 0x1000000 ml507-ramdisk.dtb; tftp 0x1C00000 uImage;
tftp 0x1800000 uramdisk.image; bootm 0x1c00000 0x1800000 0x1000000'
=> saveenv

Boot the board

=> boot

Programming
the flash with U-
Boot

With the TFTP server and U-Boot configured as shown in “Booting over the network” the user
can use U-Boot to fetch images over the network and program them into flash.

Copy the flash file system image jffs2-image.bin to C:\tftpd. Direct U-Boot to fetch the
flash file system image with TFTP.

=> tftp 0x1000000 jffs2-image.bin

Turn off write protection for the sectors to be programmed.

=> protect off FE600000 +1900000

Erase the flash area which will be programmed with the image

=> erase FE600000 +${filesize}

Program the flash with the in-memory image

=> cp.b 0x1000000 0xFE600000 ${filesize}

U-Boot Scripts U-Boot can fetch script files containing U-Boot commands and execute them. The user begins
with an ordinary text file which contains U-Boot commands.

EXAMPLE: Create the text file upgrade-all.txt

echo 'Upgrading JFFS2 image'
tftp 0x1100000 jffs2-image.bin
protect off FE600000 +1900000
erase FE600000 +${filesize}
cp.b 0x1100000 0xFE600000 ${filesize}
echo 'Upgrading device tree'
tftp 0x1100000 ml507-jffs2.dtb
protect off FFF00000 +20000
erase FFF00000 +${filesize}
cp.b 0x1100000 0xFFF00000 ${filesize}
echo 'Upgrading Linux Kernel'
tftp 0x1100000 uImage
protect off FE400000 +200000
erase FE400000 +${filesize}
cp.b 0x1100000 0xFE400000 ${filesize

Convert the script file to a U-Boot image file

$ mkimage -A ppc -O linux -T script -C none -a 0 -e 0 -n "Upgrade script"
-d upgrade-all.txt upgrade-all.img

The file upgrade-all.img is created. Copy this file to the C:\tftpd directory.

Copy the script image into memory

=> tftp 0x1000000 upgrade-all.img

Execute the script with the autoscr command

=> autoscr 0x1000000

http://www.xilinx.com

Program the FPGA bitstream with U-Boot

(v1.0) April 1, 2009 www.xilinx.com 17

R

The Linux kernel, device tree, and root file system are fetched from the TFTP server and
programmed into flash.

Running U-Boot commands in environment variables

The proceeding commands to upgrade the flash

=> tftp 0x1000000 upgrade-all.img
=> autoscr 0x1000000

can be simplified by placing them in an environment variable

=> setenv update-all 'tftp 0x1000000 upgrade-all.img; autoscr 0x1000000'
=> saveenv

From now on, the flash images can be updated using the latest update script by running this
environment command

=> run update-all

Program the
FPGA bitstream
with U-Boot

The Virtex 5 FPGA can be configured with a parallel flash. The same flash which holds U-Boot,
Linux, and the Linux file system is used for the purpose of configuring the FPGA. This will allow
the design to be entirely standalone, eliminating the need to configure the FPGA with impact.

1. Set the ML507 configuration switches so that the FPGA will be configured with BPI_UP
configuration 0. SW3 is set to 00001000.

2. An image file of suitable format is prepared from the download.bit file generated in
“Executing the Reference System from XPS for Hardware”.

$ cd <edk project>/implementation
$ promgen -w -p bin -c FF -o download.bin -u 0 download.bit

Note: A previously generated download.bit and download.bin are available in the
ready_for_download area.

Note: The bitstream used must use the Configuration Clock as the Startup Clock. This has already been
specified in the EDK project file etc/bitgen.ut as shown:

-g StartUpClk:CCLK

3. Copy the generated download.bin to the TFTP directory C:\tftpd

4. Program the image with U-Boot

=> tftp 0x1000000 download.bin
=> protect off FE000000 +${filesize}
=> erase FE000000 +${filesize}

X-Ref Target - Figure 9

Figure 9: ML507 SW3 Settings for BPI UP configuration 0

http://www.xilinx.com

References

(v1.0) April 1, 2009 www.xilinx.com 18

R

=> cp.b 1000000 FE000000 ${filesize}

5. Press the ‘PROG’ button. The FPGA is configured from flash, and U-Boot is executed.

References 1. UG347 ML505/506/507 Evaluation Platform

2. XAPP1107 Getting Started Using Git

3. http://www.denx.de/wiki/DULG/ELDK DENX Embedded Linux Development Kit

4. http://git.xilinx.com Xilinx GIT server and access portal

5. http://xilinx.wikidot.com Xilinx Open Source documentation

6. http://tftpd32.jounin.net TFTPD32 Open Source TFTP server for Windows

Revision
History

The following table shows the revision history for this document.

Notice of
Disclaimer

Xilinx is disclosing this HOWTO guide to you “AS-IS” with no warranty of any kind. This HOWTO guide is
one possible implementation of this feature, application, or standard, and is subject to change without
further notice from Xilinx. You are responsible for obtaining any rights you may require in connection with
your use or implementation of this HOWTO guide. XILINX MAKES NO REPRESENTATIONS OR
WARRANTIES, WHETHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL XILINX BE LIABLE FOR ANY LOSS OF
DATA, LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR INDIRECT
DAMAGES ARISING FROM YOUR USE OF THIS HOWTO GUIDE.

Date Version Description of Revisions

04/01/09 1.0 Initial Xilinx release.

http://www.xilinx.com
http://www.denx.de/wiki/DULG/ELDK
http://www.denx.de/wiki/DULG/ELDK
http://www.xilinx.com/support/documentation/boards_and_kits/ug347.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1126.pdf
http://xilinx.wikidot.com/
http://tftpd32.jounin.net
http://www.xilinx.com/support/documentation/application_notes/xapp1107.pdf

	Using U-Boot with the Xilinx ML507 Evaluation Platform
	Summary
	Included Systems
	Introduction
	Target Audience
	Hardware And Software Requirements
	Reference System Specifics
	Address Map

	Executing the Reference System
	Executing the Reference System using the Pre-Built Bitstream and the Compiled Software Application
	Executing the Reference System from XPS for Hardware

	Obtaining the Software
	Obtaining the Software with GIT
	Obtaining a snapshot of the software without GIT
	Obtaining a toolchain

	Generate the BSP
	Build U-Boot
	Modify the u-boot source
	Build a U-Boot image

	Program the Bootloader into Flash with Xilinx FlashWriter
	Build the Linux kernel
	Configure the kernel

	Create a JFFS2 flash filesystem
	Flash Organization
	Prepare the device tree for U-Boot
	Modify the kernel command line to use the flash
	Compile the device tree

	Program Linux into flash with FlashWriter
	Configure the U-Boot environment
	Booting over the network
	Configure the TFTP server
	Linux
	Microsoft Windows

	Prepare the ramdisk image for use with U-Boot
	Configure the U-Boot environment
	Modify the kernel command line to use a ramdisk
	Compile the device tree
	Fetch and boot Linux
	Configure U-Boot to autoboot over the network

	Programming the flash with U- Boot
	U-Boot Scripts
	Running U-Boot commands in environment variables

	Program the FPGA bitstream with U-Boot
	References
	Revision History
	Notice of Disclaimer

