

Avnet Virtex-5 FXT Evaluation Board

Executing From Flash Reference Design

Version 1.0

July 2008

1

1 Introduction
This document describes a simple PowerPC design that executes code directly from the
on-board parallel Flash. The design illustrates the use of Xilinx Micro-Kernel (XMK)
operating system. Please refer to the “Using Xilkernel” chapter of the Platform Studio
User Guide for information on the Xilinx Micro-Kernel operating system.

2 Reference Design Requirements
This reference design will require the following software and hardware setups.

2.1 Software
The software requirements for this reference design are:

• Windows XP
• Xilinx ISE 10.1 with Service Pack 2
• Xilinx EDK 10.1 with Service Pack 2

2.2 Hardware
The hardware setup for this reference design is:

• Computer with 1 GB RAM and 1 GB virtual memory (recommended)
• Avnet Virtex-5 FXT evaluation board
• Straight through RS232 cable
• Power supply
• JTAG programming cable (USB or PC4)

2

3 Reference Design Block Diagram
The following figure shows a high- level block diagram of the reference design. The
design consists of:

• PowerPC Processor
• 32KB of BRAM
• 32MB of Flash
• Timer and Interrupt Controller
• RS232 Port

OSC
@100 MHz

FPGA

Reset
Switch

JTAG
Header

PowerPC 440 Processor

MPLB

Memory
Controller

Timer/
Counter

Flash
(32MB)

UART

RS232
Connector

Interrupt
Controller

JTAG Controller

BRAM
Controller

BRAM
(32K)

Figure 1 – Reference Design Block Diagram

3

4 MB XMK Design Software
The MB XMK software source code is located in the /xilkernel_demo folder of the
project directory. The MB XMK software consists of the following threads:

Thread Description
shell This is the main controlling thread and presents a shell with a few simple

commands from which you can launch the other demo threads.
prodcon Producer consumer example thread(s) using message queues.
llist Linked list demo using the buffer memory allocation interfaces.
sem Semaphore example showing multiple competing threads using

semaphores to coordinate.
TicTacToe Simple tic-tac-toe game, which illustrates how to dynamically assign

stack memory to a thread when creating it.
TimerTest Simple time management demo.
prio Thread illustrating dynamically changing priorities and priority queues in

the kernel structures.
mutex Mutex demo, illustrating pthread mutex locks.
clock Simple thread, using the second timer device and handling interrupts

from it, to keep track of wall-clock time. This illustrates user- level
interrupt handling.

standby Simple standby thread.

The XMK application code for this reference design will reside in the on-board Flash and
internal Block RAM. Specifically, the read/write data portion of the application will
reside in BRAM while the read-only data and the code will reside in the on-board Flash.

5 Linking and Compiling the Application Code

1. Open the design in XPS and you should see system view of the project as shown
in the following figure.

4

2. Click on the Applications tab to view the software project associated with this
design. As shown in the following figure, the xilkernel_demo software project is
marked to be initialized in the FPGA BRAM.

Since the software for this application will reside in the on-board Flash as well as
the FPGA BRAM, the “Mark to Initialize BRAMs” for the xilkernel_demo
software project will store the read/write data portion of the application software
in the FPGA BRAM when the FPGA is configured. The read-only portion of the
data along with the code must be programmed into the on-board Flash.

3. Select Software > Generate Linker Script… from the XPS GUI to view the
linker script for the xilkernel_demo software project as shown in the following
figure.

5

4. The linker script dialog box will appear as shown in the following figure. The
.vectors , .text (code), .rodata (read-only data), and the .rodata1 sections are
mapped to the on-board Flash, while the remaining sections, including the Stack
and Heap areas are mapped to the FPGA BRAM. Click Cancel to continue.

5. Right-click on the xilkernel_demo software project and select Build Project to
compile the application software and generate the executable.elf file (this file will
be stored in the /xilkernel_demo folder of the project.

6

6 Implementing and Running the Design

1. Select Device Configuration > Update Bitstream from the XPS GUI to build
the design and initialize the BRAM. As shown in the following figure, you will
get a warning message stating that the entire code and data cannot be placed in the
FPGA BRAM. This is a valid warning message as the code section as well as the
read-only data will be placed in the on-board Flash.

7 Setting Up the Board
Perform the following steps to setup the board for running the application software.

1. Verify the Power switch, SW7, is in the OFF position.
2. Install a jumper on JP3 pins 2-3
3. Install a jumper on JP2 pins 2-3
4. Install a jumper on JP1 pins 1-2
5. Install a jumper on JP5 pins 2-3 (FPGA JTAG mode)
6. Connect the power supply to the J11 connector on the FXT evaluation board and

also plug it into the AC outlet.
7. Connect the USB JTAG cable to J9 and the USB port of the PC.
8. Connect a straight through RS232 cable to the board DB-9 connector (P1) and the

serial port of the PC. Alternatively, you can use an RS232-USB adapter and
connect this adapter to the DB-9 connector and the USB port of the PC. In this
case, you must install the RS232-USB driver for the adapter.

9. Slide the power switch to the ON position
10. Start a Hyper Terminal session and set the serial port parameters to 19200 baud

rate, 8 bits, 1 stop bit, no parity and no flow control.

7

8 Generating the Flash Binary File

Prior to programming the Flash, the executable.elf file must be converted to a binary file
that contains the read-only and code sections of the program leaving out the sections that
are stored in the FPGA BRAM.

1. Launch the EDK Shell command window by selecting Project > Launch EDK
Shell from the XPS GUI as shown in the following figure.

2. At the EDK Shell prompt, enter the following lines hitting the return key after
each line as shown in the following figure. This will generate a file called
flash.bin in the /xilkernel_demo folder that contains the .text, .init, .fini, and
.rodata sections of the application software.

cd xilkernel_demo
powerpc-eabi-objcopy -O binary –j .vectors -j .text -j .init -j .fini -j .rodata –j
rodata1 executable.elf flash.bin

8

9 Programming the Flash

1. Select Device Configuration > Download Bitstream from the XPS GUI to
download the design to the board.

2. Select Device Configuration > Program Flash Memory from the XPS GUI,

the Program Flash Memory dialog box will appear as shown in the following
figure.

9

3. Please set the following parameters on the Program Flash Memory dialog box:
a. Under the File to Program, browse to the /xilkernel_demo folder and select

flash.bin file (you need to select show all file types to see this file as the
search window defaults to .elf files).

b. Under the Scratch Memory Properties, use the drop-down box and select
xps_bram_if_cntlr_1.

c. The Program Flash Memory dialog box should look as shown in the
following figure. Click OK to continue and program the Flash.

10

10 Running the demo

1. Since the FPGA BRAM was used as scratch area for the Flash programmer, the XMK
demo data in the BRAM is over written. So, the FPGA must be configured again to
load the BRAM with the application data. Select Device Configuration > Download
Bitstream from the XPS GUI to configure the FPGA. Once the FPGA is configured,
the XMK program will begin to run and you should see the following on the Hyper
Terminal.

• Enter “help” to get a list of commands.

11

• Enter “list” to get a list of programs.

• Enter “run” followed by a number (0-6) to run a program. For example, enter
“run 4” to play the Tic-Tac-Toe game.

