Avnet Virtex-5 FXT Evaluation Board
Executing From Flash Reference Design

VIRTEX"

&S

Version 1.0
July 2008

= TAVNET

1 Introduction

This document describes a simple PowerPC design that executes code directly from the
on-board paralel Flash. The design il lustrates the use of Xilinx Micro-Kernel (XMK)
operating system. Please refer to the “Using Xilkernel” chapter of the Platform Studio
User Guide for information on the Xilinx Micro-Kernel operating system.

2 Reference Design Requirements
This reference design will require the following software and hardware setups.

21 Software

The software requirements for this reference design are:
Windows XP
Xilinx ISE 10.1 with Service Pack 2
Xilinx EDK 10.1 with Service Pack 2

2.2 Hardware
The hardware setup for this reference design is:
- Computer with 1 GB RAM and 1 GB virtual memory (recommended)
Avnet Virtex-5 FXT evauation board
Straight through RS232 cable
Power supply
JTAG programming cable (USB or PC4)

il

3 Reference Design Block Diagram
The following figure shows a high-level block diagram of the reference design. The
design consists of :

PowerPC Processor

32KB of BRAM

32MB of Flash

Timer and Interrupt Controller

RS232 Port

Reset OosC JTAG
Switch @100 MHz Header

v I

FPGA
Flash RS232
(32MB) Connector
Figure 1 — Reference Design Block Diagram
AVNET ’

4 MB XMK Design Software

The MB XMK software source code is located in the /xilkernel_demo folder of the
project directory. The MB XMK software consists of the following threads:

Thread Description

shell This is the main controlling thread and presents a shell with afew smple
commands from which you can launch the other demo threads.

prodcon Producer consumer example thread(s) using message queues.

[list Linked list demo using the buffer memory allocation interfaces.

sem Semaphore example showing multiple competing threads using
semaphores to coordinate.

TicTacToe Simple tic-tac-toe game, which illustrates how to dynamically assign
stack memory to a thread when creating it.

TimerTest Simple time management demo.

prio Thread illustrating dynamically changing priorities and priority queuesin
the kernel structures.

mutex Mutex demo, illustrating pthread mutex locks.

clock Simple thread, using the second timer device and handling interrupts
from it, to keep track of wall-clock time. This illustrates user-level
interrupt handling.

standby Simple standby thread.

The XMK application code for this reference design will reside in the onboard Flash and
internal Block RAM. Specifically, the read/write data portion of the application will
reside in BRAM while the read-only data and the code will reside in the on-board Flash.

5 Linking and Compiling the Application Code

1. Open the design in XPS and you should see system view of the project as shown
in the following figure.

Buz Interfaces Ports || Addresses
M arme Buz Connection IFP Tupe IP Yersion
[l | | @< pocdd] 0 ppoddd witexS 1.01.a
: [o -
@ [F]- =
3 3~]
[#- < xpz bram F ool T bram bram_block, 1.00.a
-« fagope ok jtagppc_chtl 2Mb
H-<® piog_ gz revef proc_sps rezet 200.a
@ [F]- &
I 3 <@
@ [~ 55
“# clock_gemerafor 7 clock_generator 2.01.a
2 FLASH BANTES il bus splf £ util_bus_split 1.00.a

2. Click onthe Applications tab to view the software project associated with this
design. As shown in the following figure, the xilkernel_demo software project is
marked to beinitialized in the FPGA BRAM.

Since the software for this application will reside in the on-board Flash as well as
the FPGA BRAM, the “Mark to Initialize BRAMSs” for the xilkernel_demo
software project will store the read/write data portion of the application software
in the FPGA BRAM when the FPGA is configured. The read-only portion of the
data along with the code must be programmed into the on-board Flash.

Project Information Area

.F'rniect |.-'1'-.|:-|:|Iin::ati|:|r'|s iIF' Catalog

Software Projects
e)Add Software Application Project...
_ mDefault: ppcdd40 0 boaotloop
= a. Project: xilkernel_demo
#- Proceszor ppoddd_0
Erecutable: C:ADatahFT_Ewaluation_Esecuting_Fraor
[#- Compiler Optians
[#- Sources
- Headers

3. Select Software > Generate Linker Script... from the XPS GUI to view the
linker script for the xilkernel_demo software project as shown in the following
figure.

« Xilinx Platform Studio - C:/Data/FXT_Evaluation_Executing_Frm

File Edit View Project Hardware BEREREN Device Configuration Debug 3

OB M Et: ig €% Launch Platform Studio SDK
Project Information Area B Software Platform Settings. ..

Froject i.ﬁ.pplicatiuns iIF' Catalag fssign Default Drivers

S oftware Projects UbE Generate Libraries and BSPs

[add S oftware dpplication Praject.. 7] Add Saftware Application Praject...

Default: ppcd40_0_boatlacp é Build All User Applications
= }# Project: xilkernel_demo e
#- Proceszor ppodd0_0
Ezecutable: C:ADatayFsT_Evaluz E

Generate Linker Scripk, ..

= YAVNET 4

4. Thelinker script dialog box will appear as shown in the following figure. The
.vectors, .text (code), .rodata (read-only data), and the .rodatal sections are
mapped to the on-board Flash, while the remaining sections, including the Stack
and Heap areas are mapped to the FPGA BRAM. Click Cancel to continue.

« Generate Linker Script

Sections View: Heap and Stack Wiew:

S ection S-i;e[bytes] Memory Section S-i;_[bytes] Memony

wectars Heap 0400 IHps_bre;m_if_cnth b

tent Dx00003925 . Stack 400 |sps_bram_if_cnth v

radata DX00002D3E FLASH_GM#16_{ v

radatal 0x00000000 [FLASH_EMx16_(

.sdataZ (00000000 |>:ps_blam_if_cntl| v

shss? Dx00000000 wps_bram_if_cnth

data DX00000154 wps_bram_it_crith . Memories View:

.datal (00000000 iEs_bram_if_cnth - _I:'Iemnly Start Address Length
fisup 0x00000000 ups_bram_if_cntl v FLASH_GM«16_C_MEMO_BASEADDR | 04FCO00000 32768K,
sdata 000000034 ps_bram_ii_crtli ups_bram_if_crt_1 DWFFFFBO00 3K
shs 000000110 wps_bram_i_crith %

| bss DA00004400 ps_bram_if_onth

: ¢ 5|

Add Section] [Delete Section]

ELF file uzed to populate section infarmation:
T R

Boot and Vectar Sections: [T _E valuation_ExecutingFrom_Flash_Designtzikeme]_demotesecutable.elf |
| Section Address Memary |

| .baontd 0=FFFFFFO0 wpa_bram_if_cntir_1 | Output Linker Seript: | niwilkerne]_dema'wilkerne|_dema_linker_script./d

I boot 0«FFFFFFFC wps_brarn_if_cntlr_1 |

[ok][Concel |[Hep |

5. Right-click on the xilkernel_demo software project and select Build Project to
compile the application software and generate the executable.€lf file (this file will
be stored in the /xilkernel_demo folder of the project.

Set Compiler Opkions. ..

- Processor. ppeddd_D v Mark to Initidlizs BR:AMs
Executable: C:AData T _Ewvalua

H Compiler Option

Build Project:

= YAVNET 5

6 Implementing and Running the Design

1. Select Device Configuration > Update Bitstream from the XPS GUI to build
the design and initialize the BRAM. As shown in the following figure, you will
get a warning message stating that the entire code and data cannot be placed in the
FPGA BRAM. Thisisavalid warning message as the code section as well as the
read-only data will be placed in the on-board Flash

hnalyzing file xilkernel_demoﬁexecutahle.elf...
WARNING:MDT - E1f file xilkernel_demo!executable.elf does not reside completely

within BRAM memory of processor ppod40 0.
WARNING:MDT - The sections of ELF residing outside BRAMsS must he initialized

separately using a debugger, a bootloader, or an ACE fileRunnhing DatazMewm with the following comnstd:
dataZmem —bin ”implementationﬁsvstem_bd" -bt "implementation/system.hit™ -bd
”xilkernel_demofexecutable.elf" tag ppod44d 0 -o b implementation/download.bit
Memory Initialization completed successfully.

Done !

£
Output | wiarning || Emar

o
o
i i)
k]

(=]
[}

7 Setting Up the Board
Perform the following steps to setup the board for running the application software.

1. Verify the Power switch, SW7, isin the OFF position.

2. Ingtal ajumper on JP3 pins 2-3

3. Install ajumper on JP2 pins 2-3

4. Ingtal ajumper on JP1 pins 1-2

5. Ingtal ajumper on JP5 pins 2-3 (FPGA JTAG mode)

6. Connect the power supply to the J11 connector on the FXT evauation board and
also plug it into the AC outlet.

7. Connect the USB JTAG cable to J9 and the USB port of the PC.

8. Connect a straight through RS232 cable to the board DB-9 connector (P1) and the

serial port of the PC. Alternatively, you can use an RS232-USB adapter and
connect this adapter to the DB-9 connector and the USB port of the PC. In this
case, you must install the RS232-USB driver for the adapter.

9. Slide the power switch to the ON position

10. Start a Hyper Termina session and set the serial port parameters to 19200 baud
rate, 8 bits, 1 stop hit, no parity and no flow control.

8 Generating the Flash Binary File

Prior to programming the Flash, the executable.elf file must be converted to a binary file
that contains the read-only and code sections of the program leaving out the sections that
are stored in the FPGA BRAM.

1. Launch the EDK Shell command window by selecting Project > Launch EDK
Shell from the XPS GUI as shown in the following figure.

w5 Wilinx Platform Studio - C:/Data/EDK_10_1 De:

File Edit Wiew NaimiEes® Hardware Software Device Co

L P B g E & Project Options...
(R EENEES -0 Generate and Yiew Black Diagram

Project Applical n-ﬁ Generate and YWiew Design Report

| e el e Rescan User Repositaties

gid? S'f'”'“"'a” El Launch ECK Shel

2. Atthe EDK Shell prompt, enter the following lines hitting the return key after
each line as shown in the following figure. This will generate afile caled
flash.bin in the /xilkernel_demo folder that contains the .text, .init, .fini, and
.rodata sections of the application software.

cd xilkernel_demo
power pc-eabi-objcopy -O binary —j .vectors-j .text -j .init -j .fini -j .rodata—j
rodatal executable.elf flash.bin

o feyadrivefc/Data/FXT_Evaluation_Executing From_Flash_Design/ FXT_Evaluat_'i_hl_':l_'E_

EDK Shell
milinx EDK 18.1.82 Build EDK_K SP2.5
Copyright <c2> 1995-2808 Xilinx. Inc. All pights reserved.

Analyzing Cyguwin versions...
Hilinx EDK detected Cygwin installation v1.5%.17C(@.129-4-22 on your machine.
T]u., Cyguwin €C:sSEDE_168_15MEDEsScyguinsshbin? will be wsed to run H¥ilinx EDK tool

5% cd xilkernel_demo

¢ pouwerpc—eahbhi—objcopy -0 Einal‘y —-J -vectors —j .text —j .init -j -fini —-j .rod
ata —j rodatal executabhle.elf flash.bing

—~AVNET !

9 Programmingthe Flash

1. Sdect Device Configuration > Download Bitstream from the XPS GUI to
download the design to the board.

2. Sdect Device Configuration > Program Flash Memory from the XPS GUI,
the Program Flash Memory dialog box will appear as shown in the following
figure.

« Program Flash Memory g|
Filz To Program: | | D
Auto-conyvert file to bootloadable |_SFEEI: | format when programming flash

Processar Instance: ppeddd 0

Flazh Memaory Properties

Inztance Mame: i_F_LT-’-'-._ST-I__Eh_d:-:1 E__c_rﬂﬂ_baseaddr v|

Baze Addrezs; 0=FCO00000 Size: 32 Mbytes Bus idth: 16 bitz
Pragram at Offzet: !_I_:I_:::_EIEIEIEIEIEIEIEI i

Scratch Memon Properties

Inztance Mame: ! wps_brarm_if_cntlr_1 |

Baze Addresz: OxFFFFB000 Size: 32 Kbuptes

[] Create Flash B ootloader Application

S Application Project: l

Bootloader File Format;

Mot

FPGA muzt be pre-programmed with a bitstrearn fram an EDE. design containing an
EWMLC peripheral connected to Flash temar

ok || Cancel || Hep

= YAVNET 8

3. Please set the following parameters on the Program Flash Memory dialog box:

a

Under the File to Program, browse to the /xilkernel_demo folder and select
flash.bin file (you need to select show al file types to seethisfile as the
search window defaults to .elf files).

Under the Scratch Memory Properties, use the drop-down box and select
xps_bram_if_cntlr_1.

The Program Flash Memory dialog box should look as shown in the
following figure. Click OK to continue and program the Flash.

« Program Flash Memory

File To Program: tion,Executing_From_Flash_Designésikernel_demo/Hash bin| [.. |
Auto-canvert file to bootloadable :é.H_E_I:.: : farmat when programming flash

Processar Instance: ppoddd 0

Flazh Memony Properties

Instance Mame: FLT-'-‘-.SH__EM:-:'IIé_u:_mem[l_l:uasea-dd; ._ V
Baze Addrezz: OxFCO00000 Size: 32 Mbytes Buz ‘width: 1E bitz
Proaram at Offset: |0%00000000 |

Scratch Memon Properties
Instance Name: | »ps_bram_ii_cnti_1 [

Baze Address; O=FFFFE000 Size; 32 Khptez

[] Create Flash B ootloader Application
5w application Project:

Bootloader File Format;

M ot

FPG& muzt be pre-programmed with a bitstream from an EDK design containing an
ERLC perpheral connected toa Flazh bemory

= YAVNET

10 Running thedemo

1. Since the FPGA BRAM was used as scratch area for the Flash programmer, the XMK
demo datain the BRAM is over written. So, the FPGA must be configured again to
load the BRAM with the application data. Select Device Configuration > Download
Bitstream from the XPS GUI to configure the FPGA. Once the FPGA is configured,
the XMK program will begin to run and you should see the following on the Hyper

Terminal.

& COWA_1 - Hyper Termimel

O gdi ew Qo Trerefor belp
0= 2 OE F

shell>

e Cn D A O AN

L9200 Bl

|4

Enter “help” to get alist of commands.

£ COM_1 - Hyper Termwingl
B BN low Cdl Tramle g
0O & mE

shellrhelp

Lizt of commands
run <gl"¢ﬁ|'-ﬂh_l'ﬂ.-lﬂ->'r
time THHHMY 2
standby
clear
li=t
help
exit

shell»_

fiun & program, For e.g, “run @7 loads the first progren.

Set/Msploy the current time.

¢ Suspend all tasks for 10 seconds, Idle task emacutes

Clear the zorean

: List the programs loaded for this examsle sysiem
: This help screan

; Emit this shell

Connecsd 01T ARGTW

15200 344+

1%

5 JAVNET

10

Enter “list” to get alist of programs.

& COM_1 - Hwpei Temminak
Be B wew A Tmveler Bdp
Do & 3 O oF

B SRl e Py e T MR

shellhalp

List of commands

run <prograom_nom? ;. Bunm a progran. For 2. 0. “run 87 loads the first progrom.

time THHHW? v SetfDisplay the corrent time,

standby ¢ Suspend all tasks for 18 seconds. Ldle task esecutes.
clear i Llear the scres

list ¢ List the prusrans loaded for this example system
help : This help zcresen

oxit ¢ Ewit this shell

shell:1ist

Llst of programs loaded in this exanple swstem
MEMORY : Linked list emomple wsing buffer memorwy allocation
$emanhores exann]le
PR[IDE:EIH: Producer consumer example using messade guedes

mmnmm_m

TIMER : Tiwer ewample, illustrating sofimare timers
TICTAC : TicTacToe thread with dynemically assioned laroe stack
MUTEM - Mutew lock demo
FRID Priosity quese demo
shells
W onrmckad 0216 AkEIM 15000 H-h-L =

Enter “run” followed by a number (0-6) to run a program. For example, enter
“run 4” to play the Tic-Tac-Toe game.

& COM_1 - HyperTerminal
Be Edt Wew Cal Trecefer Hep
O =X 08

exit - Exit this shell

shell:=list

List of programs loaded in this enenple system

B: MEMORY : Linked li=zt e=xomple using buffer memory allocation
1: SEM : Semaphores ewanple

2: PRODCON: Producer consumer exawple using message gqueuss

d: TIMER : Timer example. illustrating software timers

b TICTRC @ TicTacTos thread with dynmanically assigned large stack
5: MUTEH : Mutex lock demo

6: PRID @ Priorify aueuve demo

shell*run &

-- shell going into wait-mode to join with launched program,
TICTAC: Gamsa Startin
TICTAC: Current oy

| 1
TICTAC: Hake a wowe (1-9):

foonmacied iS4 ARSI

1900 B-h-L

il

1

